• Title/Summary/Keyword: Hot-press

Search Result 496, Processing Time 0.023 seconds

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

Investigation on the mechanism of heat transfer in hot-pressing process of fiberboard manufacturing for laminate flooring (강화마루용 섬유판 열압공정에서의 열전달 원리에 대한 고찰)

  • Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.490-503
    • /
    • 2009
  • The objective of this work was to investigate the mechanism of heat transfer in hot-pressing process for MDF manufacturing by reference study. Firstly, general heat transfer theory was studied. The numerical analysis of heat transfer in hot-pressing process was studied on temperature profile, moisture profile, physical properties between moisture and board. The mechanism of heat and moisture transfer inside of board was analyzed by conduction, convection, radiation and diffusion of bound water in wood cell walls. Especially, the change of core temperature as hot press time was important factor to setup hot-pressing schedule in MDF manufacturing.

  • PDF

Measurement of Formaldehyde Emissions during Hot-Pressing of Particleboard Bonded with Melamine-Urea-Formaldihyde Resin (요소-멜라민수지로 접착된 파티클보드의 열압동안 포름알데히드 배출량 측정)

  • Lee, Jong-Kyu;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • A melamine-urea-formaldehyde (MUF) resin, based on 5 percent melamine addition of the resin solids weight, was synthesized in the laboratory for particleboard (PB) manufacture. Laboratory PBs were made with the MUF resin at three press times (3, 4, 5 min) and two resin application rates (6, 8 percent). Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PBs. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PBs were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The measurement results showed that formaldehyde emissions during the hot-pressing of PB significantly increased with increasing press time, and MUF resin application rates. PB' performance test results showed that internal bond (IB) of PB made with 3-minute press time exceeded the minimum requirement for KS F 3104 PB type 8.0.

A Performance characteristics of Pt/C Electrode prepared by Hot Pressing Method (Hot Pressing법에 의해 제조된 Pt/C 전극의 성능특성)

  • 김진수;서동우;설용건;이태희
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.58-65
    • /
    • 1992
  • Pt loaded porous carbon Pt/C electrode was prepared by hot pressing process to enhance the electrode performance in PAFC (phosphoric acid fuel cell). By changing the hot pressing conditions and PTFE contents, Pt/C electrodes were prepared and the electrochemical characteristics of oxygen reduction and unit-cell performance were evaluated. The optimum condition of hot press to make electrode is 360$^{\circ}C$ and 10 kg/$\textrm{cm}^2$. Maximum performance was obtained at 30 wt% PTFE content in the catalyst layer with 80% utilization of platinum clusters. Unit-cell performance of hot pressed Pt/C electrode was 200 mA/$\textrm{cm}^2$ at 700 ㎷ and stable performance was maintained more than 200 hr.

  • PDF

Thermoelectric Properties of the (Pb$_{1-x}$Sn/$_{x}$)Te Sintered by AC Applied Hot Pressing (AC 통전식 Hot Press 법에 의해 제조된 (Pb$_{1-x}$Sn/$_{x}$)Te 열전반도체의 물성)

  • 신병철;황창원;오수기;최승철;백동규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2000
  • Properties of AC applied hot pressed ($Pb_{1-x}Sn_{x}$) Te thermoelectrics were investigated. Mechanical alloying process used to produce alloyed powder to reduce the inhomogeneity and to avoid vaporization of constituents. It showed an increase in the mechanical alloying time with increasing of Sn contents in ($Pb_{1-x}Sn_{x}$)Te. ($Pb_{1-x}Sn_{x}$)Te were sintered at 873 to 923K for 1-4 minutes, under 150 kgf/$\textrm{cm}^2$ by AC applied hot pressng method. The short sintering time of AC applied hot pressing process could reduce the vaporization of Te. The density of ($Pb_{1-x}Sn_{x}$) Te was more dependent on the sintering temperature than the sintering time. The p-n transition was observed at x=0.1 but only p type conduction behavior was observed at more than 20 mol% of Sn compositions. The maximum value of Seebeck coefficient is 250 $\mu$V/K for x=0.2 at 500K. As the amount of Sn increases, the peak value of Seebeck coefficient drops and shifts to higher temperature and the peak value of electrical conductivity decreased with increasing temperature.

  • PDF