• Title/Summary/Keyword: Hot-press

Search Result 499, Processing Time 0.023 seconds

Properties of Y-Ba-Cu-O High Tc Superconductor prepared by Sintering, Sintering + HIP and Hot Press (Y-Ba-Cu-O계 고온 초전도체의 제조공정에 따른 물성)

  • Shin, Mee-Nam;Paek, Su-Hyon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.10-12
    • /
    • 1988
  • High Tc Y-Ba-Cu-O Superconductors were fabricated by sintering, sintering + HIP and Hot Pressing. Specimens were sintered at $940^{\circ}C$ and $960^{\circ}C$. In case that sintered specimens were treated by HIP, the relative density was increased 5-6% in comparison with sintered ones. X-ray analysis of each specimens represented orthorhombic phase and Tc measurements showed a sharp drop in the temperature range $95-88^{\circ}K$. The relative density of hot pressed samples was lower than 80%.

  • PDF

Performance of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet as Automotive Body Material

  • Shimizu, Takeshi;Asada, Hiroshi;Morikawa, Shigeru
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.74-80
    • /
    • 2010
  • For the purpose of applying a hot-dip Zn-6mass%Al-3mass%Mg alloy coated steel sheet (ZAM) to automotive body materials, a laboratory study of the general properties required for inner and outer panels of automotive bodies was performed. Even with only light coating weight, ZAM showed an excellent corrosion resistance in terms of both cosmetic and perforation corrosion compared to the currently used materials for automotive bodies, GI70 and GA45. In our study, it was confirmed that ZAM exhibits as good as or better properties than GI70 in terms of spot weldability and press formability. Furthermore, since the same corrosion resistance can be achieved with less coating weight by applying ZAM, laser weldability is better than GI and GA.

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.

Strength and durability of concrete in hot spring environments

  • Chen, How-Ji;Yang, Tsung-Yueh;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • In this paper an experimental study of the influence of hot springs curing upon concrete properties was carried out. The primary variables of the investigation include water-to-binder ratio (W/B), pozzolanic material content and curing condition. Three types of hot springs, in the range $40-90^{\circ}C$, derived from different regions in Taiwan were adopted for laboratory testing of concrete curing. In addition, to compare with the laboratory results, compressive strength and durability of practical concrete were conducted in a tunnel construction site. The experimental results indicate that when concrete comprising pozzolanic materials was cured by a hot spring with high temperature, its compressive strength increased rapidly in the early ages due to high temperature and chloride ions. In the later ages, the trend of strength development decreased obviously and the strength was even lower than that of the standard cured one. The results of durability test show that concrete containing 30-40% Portland cement replacement by pozzolanic materials and with W/B lower than 0.5 was cured in a hot spring environment, then it had sufficient durability to prevent steel corrosion. Similar to the laboratory results, the cast-inplace concrete in a hot spring had a compressive strength growing rapidly at the earlier age and slowly at the later age. The results of electric resistance and permeability tests also show that concrete in a hot spring had higher durability than those cured in air. In addition, there was no neutralization reaction being observed after the 360-day neutralization test. This study demonstrates that the concrete with enough compressive strength and durability is suitable for the cast-in-place structure being used in hot spring areas.

Forging Defects Analysis by Full 3-Dimensional Simulation based on F.V.M. (단조품 결함에 대한삼차원 단조 공정 해석)

  • 박승희;제정신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.216-220
    • /
    • 2003
  • Most important for meaningful forging simulation is the determination of correct process parameters. In addition a check and a compensation of the data base after the comparison between experiments and the computation of the developed process is necessary. The existence of a systematic process parameter data bank for special kinds of forming process in combination with forging specific simulation lifts the value of the products. Finite volume method is applied to simulate the hot forging process to investigate the defects for the automobile product. Three typical forging processes have been investigated; Extrusion by hydrolic press, Upsetting by crank press and Inclined upsetting by hammer press. Simulated result has compared with the experiment and provided a direction to improve the process.

  • PDF

Minimization of Crop Length by Sizing Press in Hot Rolling Mill (열간 조압연 공정에서 2단 사이징 프레스에 의한 크롭 최소화)

  • Heo, S.J.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.619-626
    • /
    • 2008
  • In this study, design methodology to determine optimal shape of the anvil in sizing press process has been proposed to minimize crop length of the AISI 1010 slab in horizontal rolling after width reduction. Shape of anvil were selected to 12 cases by design of experiment, and the dog-bone shapes and the crop length were determined by FE-analysis. Also, the anvil shape, which has minimum crop length, were determined by artificial neural network(ANN). As a result of FE-analysis, it can be seen that the crop length was increased with increasing center thickness in the dog-bone shape after width reduction. The anvil shape which has minimum crop length, was estimated to ${\theta}_{1}=21^{\circ}{\theta}_{2}=14^{\circ}$ by FE-analysis and ANN.

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF