• 제목/요약/키워드: Hot-forging

검색결과 351건 처리시간 0.024초

티타늄디스크 근사정형 열간단조시 금형속도의 최적화 (Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging)

  • 박종진
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

모델재료와 SLA 시금형을 이용한 터빈블레이드 열간단조공정의 모사실험 (Experiment of Turbine Blade Hot Forging Process using Model Material and SLA Prototype Die Set)

  • 박근;신민철;양동열;조종래;김종수
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.335-344
    • /
    • 1995
  • In this paper, an experimental study of a hot forging process is carried out using plasticine and the die set manufactured with the aid of rapid prototyping. In order to manufacture the die set, Stereolithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is performed using palsticine and the SLA prototype die set. Through the experiment, it has been shown that SLA prototype is suitable to the die set for the plasticine workpiece, and the formability and the forming load of turbine blade forging are predicted.

  • PDF

프레스 제품의 가공을 위한 통합적 CAPP 시스템 개발 (Development of Integrated Computer-Aided Process Planning System for Press Working Products)

  • 최정일;김창봉;김철;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.59-70
    • /
    • 1999
  • This paper deals with automated computer-aided process planning by which designers can determine operation sequences even if they have little experience in the design of press working products. The computer-aided process planning in hot forging, deep drawing and blanking requires many kinds of technical and empirical skills based on investigation and collection of the knowledge of their processes. An approach to the CAPP system is based on the knowledge-based rules and the process knowledge base consisting of process planning rules is built. The methodology adopted to develop the system is elaborated in this paper. This system has been written in AutoLISP on the AutoCAD with a personal computer and provides powerful capabilities for process planning of hot forging, cold forging, deep drawing and blanking products.

  • PDF

알루미늄 6061 합금의 열간단조시 변형율속도 및 변형율에 따른 기계적 성질에 관한 연구 (A Study on the Mechanical Properties with the Strain rate and Strain for Aluminum 6061 Alloy in Hot Forging)

  • 김정식;이영선;김용조;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.154-158
    • /
    • 2002
  • The mechanical properties of Al 6061 excluded bar were deformed in high temperature with the variable deformation conditions and characterized by the tensile test. Three types of different strain rate were experimentally performed by using hydraulic press, crank press and hammer and two types of the nominal strain 0.5 and 0.8 were achieved. To decide optimum forging process, the relationship among the strain rate, strain and mechanical properties was explained by analyzing the microstructures of the forged and heat heated parts. The strength was deeply related with the strain rate due to the dynamic recrystallization (DRX) in hot forging, and the best forging condition was presented in Al 6061 alloy.

  • PDF

원웨이 클러치 베어링 외륜의 열간과 냉간 복합단조 공정 기술 개발 (Development of Hot and Cold Combined Forging Process for a One-Way Clutch Bearing Outer Race)

  • 장수진;전병윤;장성민;전만수;문호근;성현석;허민호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.441-444
    • /
    • 2009
  • In this research, a hot and cold combined forging process for manufacturing net-shape one-way clutch bearing outer race of an automobile automatic transmission unit is developed. The process is composed of hot forging for manufacturing an optimized gear-like perform and precision cold forging for sizing the perform into final net-shape product. Finite element simulation techniques are applied to find the optimized process designs including blank and die shapes. The predictions and experiments are compared, revealing that they are in good agreement with each other. The dimensional test showed that the important dimensional requirements on gear tooth-like shape of the forged product were fulfilled.

  • PDF

복합단조 공정을 적용한 Outer Support Ring 개발 (Development of Outer Support Ring using Complex Forging Processes)

  • 주원홍;박성영
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.653-659
    • /
    • 2017
  • 본 연구에서는 원웨이 클러치의 핵심 부품인 Outer Support Ring의 복합 단조 공정을 개발하고, 시제품을 제작하여 평가하였다. 기존 공정 즉, 열간 단조와 MCT 가공 공정은 과대한 소재 절삭량과 가공 시간이 길다는 단점이 있다. 이를 극복하고자 열간 단조를 통하여 형상을 구현하고, 냉간 단조를 통하여 정밀한 부품을 성형하였다. 최소한의 가공만을 적용하는 복합 단조 공정을 개발하였다. 상용 소프트웨어인 Deform-3D를 이용하여 단조 해석을 수행하였다. 해석 결과를 바탕으로 열간 단조 및 냉간 단조 공정을 설계하였고, 실제 금형 및 시제품을 제작하였다. 제작한 시제품은 경도, 표면 조도, 내부 결함, 단류선 검사 등의 평가를 수행하였다. 평가결과 특이한 문제점은 발견되지 않았으며, 양산적용이 가능할 것으로 판단된다. 복합 단조를 통하여 열간 단조와 MCT 가공 공정 대비 약 27%의 소재를 절감할 수 있었다. 또한 제품 개당 생산 시간은 약 2.15배 단축되었다. 본 연구를 통하여 원가 절감이 가능한 공정 및 금형 설계 기술을 확립하였고, 이를 통하여 관련 자동차 부품 생산에도 긍정적인 효과가 있을 것으로 기대된다.

강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석 (An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method)

  • 조현중;박종진;김낙수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

베어링강의 고온변형특성과 열간 단조조건에 관한 연구 (Hot Deformation Behavior of Bearing Steels and Their Optimal Hot Forging Conditions)

  • 문호근;이재성;윤선준;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 2002
  • In this paper the stress-strain curves of bearing steels at hot working conditions are obtained by compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are obtained by tensile test with a computer controlled servo-hydraulic Gleeble 1500 testing machine. These tests have been focused to obtain the flow stress data and optimal hot forging conditions under various conditions of strain rates and temperatures. The strain rate sensitivity exponent and reduction of area of the materials are evaluated. Experimental results are resented for various conditions of temperatures and strain rates.

  • PDF

고망간강 플랜지의 열간 단조 후 냉각방법에 따른 미세조직 및 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties according to Cooling Method after Hot Forging of High Manganese Steel Flange)

  • 박민하;이강호;김병준;김병구
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.44-54
    • /
    • 2024
  • High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.

변형량 및 변형속도 변화에 따른 Al 6061합금의 특성 변화 (Mechanical Characteristics of Al 6061 Alloy with the Variation of Strain and Forming Speed)

  • 권용남;권진욱;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2003
  • The forging of Al 6061 has been studied by using finite element analysis and real forging experiment to find out the effect of strain rate and strain on the final forged product. It seems to be well known that the mechanical properties depend on the microstructures of forged products. The hot deformation of Al alleys including Al 6061 has been researched quite a long period on the various aspects. However, the forging of Al alloys seem to have few information, especially the recrystallization, recovery and grain growth. To elucidate the process variables to control those microstuctual aspects the specially designed model was used for finite element simulation and forging experiments, in which the variation of strain and strain rate could be obtained. The effect of strain md strain rate has been related with the microstructures of forging stocks.

  • PDF