• 제목/요약/키워드: Hot-forging

검색결과 351건 처리시간 0.025초

Incoloy 825 합금의 기계적 성질에 미치는 열간단조비의 영향 (Effect of Hot Forging Ratio on the Mechanical Properties in Incoloy 825 Alloy)

  • 박영태;정영훈;강창룡
    • 열처리공학회지
    • /
    • 제29권6호
    • /
    • pp.259-263
    • /
    • 2016
  • This study was carried out to investigate the effect of hot forging ratio on the microstructure and mechanical properties of incoloy 825 alloy. Hot forging was carried out at the forging ratio of 0%, 60% and 90% respectively in a range of $900^{\circ}C{\sim}1,140^{\circ}C$ and followed solution treatment was conducted at $1,000^{\circ}C$ for 1 hr. In all the specimens of hot forged of 0%, 60% and 90%, precipitates were not observed. The average grain size of 0% specimen is $82{\mu}m$ and that of 60% and 90% is $56{\mu}m$ and $31{\mu}m$, respectively. The range of grain size in the 0% specimen is uneven in $182{\mu}m$ to $31{\mu}m$, but the grain size of 90% specimen is uniform. With increasing hot forging ratio, the mechanical properties such as tensile strength, elongation, hardness increased and impact toughness increased by grain refinement.

축대칭 열간 강단조의 피니셔 설계 시스템 개발 (Development of a Finisher Design System for Axisymmetic Hot Steel Forging)

  • 김대영;박종진
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.291-297
    • /
    • 1998
  • A forging product in general is made through buster blocker and finisher processes. The dies used in these processes are designed by experienced forging engineers. In the present study an expert system is developed for the finisher die design of axisymmetric hot steel forging. It is a rule based system written in Fortran and AutoLISp operating on a personal computer. In this paper major rules consid-ered in the system are summarized and the capabilities of the system are examined through several examples.

  • PDF

AA6061 휠 성형공정의 열-점소성 유한요소해석 (Analysis of AA6061 Wheel Forging Processes by the Thermo-Viscoplastic Finite Element Method)

  • 김영훈;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.11-16
    • /
    • 1997
  • In this study, the finite element analysis of AA6061 wheel forging processes over hot working range is performed and a thermo-viscoplasticity theory applicable to hot forging is applied for simulation. Aluminum alloy has frequently been utilized to manufacture automobile and aircraft parts due to its various advantages such as lightness, good forgeability, and wear resistance. Several forging conditions are applied to the simulation, such as die speeds, rib thicknesses, and depth of die cavity. The effectiveness of the simulation results is summarized in terms of metal flow, strain distributions, temperature distributions, forging load, which are essential to over all process design.

  • PDF

단류선을 고려한 베어링 허브의 열간 단조 공정설계 (The Process Design for Hot Forging of Bearing Hub Considering Flow Line)

  • 변현상;노현영;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

온, 열간 단조의 구성방정식에 관한 연구 (A Study on Constitutive Equations for Warm and Hot Forging)

  • 강종훈;박인우;제진수;강성수
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.75-81
    • /
    • 1998
  • Simulations of warm and hot forming processes need reliable expressions of flow stress at high temperatures. To get flow stress of the materials usually tension, compression and torsion tests are conducted. In this study, hot compression tests were adopted to get flow stress of medium carbon steel. Experiments have been conducted under both isothermal, near constant strain rate in the temperature ranges 650~100$0^{\circ}C$. Phase transformation takes place by temperature changes for steels in hot and warm forging stage. So Constitutive equation are formulated as the function of strain, strain rate and temperature for isothermal conditions and phase transformation.

  • PDF

베어링강의 고온변형 특성에 관한 연구 (A Study on Hot Deformation Behavior of Bearing Steels)

  • 문호근;이재성;유선준;전만수
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구 (A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw)

  • 김영득;김동영;김동권;김재철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

AZ80 압출재를 이용한 고온단조 윤활특성 분석 (Study on the Lubrication Characteristics at the Elevated Temperature in Hot Forging Test with Extruded AZ80 Mg Alloy)

  • 윤종헌;이상익;전효원;이정환
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.108-113
    • /
    • 2013
  • This paper demonstrates the lubricant performance in T-shape hot forging of Mg alloys. This processes induces complex plastic material flow of the initial billet such as simultaneous compression and extrusion deformations. Five lubricants with different amounts of graphite are applied to the T-shape forging at temperatures of 300 and $350^{\circ}C$. As the amount of graphite in the lubricant increases, the extruded depth gradually increases, which improves hot forgeability for Mg alloys. However, the lubricant performance decreases as forging temperature increases from 300 to $350^{\circ}C$. As the punch stroke increases, forgeability is considerably influenced by the lubricant. Thus, the selection of lubricants in hot forging of Mg alloys is critical when plastic deformation is severe.