• Title/Summary/Keyword: Hot-forging

Search Result 352, Processing Time 0.028 seconds

FE Analysis of Forging Process for Improving Tool Life in Hot Forging of CV Joint Outer Race (등속조인트 외륜 열간단조의 금형수명 향상을 위한 단조공정 유한요소해석)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 2014
  • During the hot forging process, the most common cause of tool failure is wear. Tool wear results in the gradual loss of part tolerances, after which eventually the tool must be replaced or repaired. In order to maximize the lifetimes of forging tools, it is important to investigate the wear mechanisms of these tools. In this study, the hot forging of the outer race of an automotive constant-velocity joint was analyzed by a finite element method to investigate the wear distribution, especially the amount and location of the maximum expected wear damage, using Archard's wear model, which was modified considering the forging temperature. Forging analyses were carried out after modifying blocker forging tools based on established versions. The modified blocker tools resulted in an increase in the tool life up to 31% with a finisher punch.

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Finite Element Analysis of Multistage Hot Forging Process During Mold Cooling (금형 냉각을 고려한 다단 열간 단조 공정의 유한요소해석)

  • Choi, Du-Soon;Kang, Hyoungboo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.75-81
    • /
    • 2020
  • Multistage hot forging process enables mass production of various parts at a high speed, wherein, it is important to design the forging steps in an optimal way. Finite element methods are widely applied for optimizing the forging process design; however, they present inaccurate results due to the rapid change in the mold temperature during multistage hot forging. In this study, the temperature distributions of the mold in a steady state were calculated via heat transfer analysis during mold cooling. The flow stress and friction coefficient of the material were measured according to the temperature and were applied for numerical analysis of the multistage hot forging process. Eventually, the accuracy of the analysis results is verified by comparing these results with the experiments.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각방법에 따른 열간단조 금형의 수명 평가)

  • 김병민;김동환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.23-26
    • /
    • 2003
  • This paper explains the die cooling method for improving tool life in the hot forging process. In continuous forming operation such as hot forging process, performed at high speeds, temperature increases of several hundred degrees may be involved. Die hardness was reduced due to thermal softening. Factor of die fracture are wear and plastic deformation of die due to hardness reduction by high temperature. Because die service life was reduced due to this phenomenon during hot forging, quantified data for optimal die cooling method is required. The new developed techniques for predicting tool life applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process

  • PDF

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

Comparison of Hot Forging Characteristics of Mg Alloys (Mg합금의 열간단조 특성 비교)

  • Kim, T.O.;Lee, J.H.;Kwon, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.75-77
    • /
    • 2007
  • Mg alloys have the highest specific strength which can be used industrial application. Since formability of Mg alloys is very limited, optimization of forming process is always needed for successful engineering application. In the present study. three different Mg alloys were used for hot forging processes and several process variables such as temperature and forging speed were investigated to improve forgeability of Mg alloys. To understand the effect of process variables in details, 2D-finite element analysis and forging experiment was performed. In the results, forging speed seems to be more important than forging temperature in hot forging of Mg alloys.

  • PDF

Hot Forging of an Engine Piston using Control Cooling (제어냉각 장치를 이용한 엔진피스톤 열간단조 공정에 관한 연구)

  • Lee, S. I.;Choi, D. H.;Lee, J. H.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.411-417
    • /
    • 2015
  • The piston engine is an essential component in automobiles. Since the piston is used in a high temperature and high pressure environment, the piston needs to be manufactured to achieve high strength and high durability. In addition, cost reduction is also an important consideration. In conventional forging, an additional heat treatment after hot forging is necessary to ensure proper mechanical properties for heavy-duty engine pistons. The newly developed manufacturing method lowers production costs by saving manufacturing time and reduces energy consumption. The current paper describes the hot forging of an engine piston made from 38MnSiVS5 micro-alloyed steel using controlled cooling. The finite element analysis was used to check for possible problems and suitable press capacity. Hot forging experiments were then conducted on a 2500tons crank press to evaluate feasibility of the proposed material and process. To check the mechanical properties after hot forging, the forged specimens were tensile tested, and the microstructures were examined in order to compare the results with the conventionally forged material. The skirt region of the as-forged 38MnSiVS5 piston showed better material properties compared to the conventional material. In addition, the total production time was reduced by about 80% as compared to conventional forging.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.