• Title/Summary/Keyword: Hot-Fire Test

Search Result 69, Processing Time 0.019 seconds

An experimental study on the liquid rocket combustion chamber cooling (액체로켓 연소실 냉각에 관한 실험적 연구)

  • Kim, B.H.;Park, H.H.;Jeong, Y.G.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • To protect combustion chamber from high temperature combustion gas, regenerative cooling is used for most liquid rocket engine. Although regenerative cooling is the most effective way to protect the chamber from high heat flux, realization of this system requires detail analysis, manufacturing technique and high cost. To demonstrate the possibility of applying regenerative cooling to a real rocket engine, the hot fire test has been carried out for the sub-scale liquid rocket with the water cooling system. The main purpose of the test is to identify the problem area of design, safety and cost effective manufacturing technique. The coolant passage was 3 mm in width and wall thickness was 1 mm with stainless steel. Maximum combustion time and pressure were 60 seconds and 400 psi, respectively. The flow rate of coolant was reduced gradually from 2 kg/s to 0.12 kg/s throughout firing test, combustion chamber was visually examined and no dwfect was observed.

  • PDF

Development of Sub-scale Combustor for a Liquid Rocket Engine Using Swirl Injector with External Mixing (외부혼합 와류분사기를 장착한 액체로켓엔진용 축소형 연소기 개발)

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.102-111
    • /
    • 2004
  • The procedure of design and manufacture of sub-scale combustor using bipropellant swirl injector with external mixing for a liquid rocket engine are described. The results of cold flow test, ignition test and combustion test of the sub-scale combustor are also given in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors. The cold flow, ignition and combustion tests were successfully performed without damage of combustor. Results of hot firing tests show that combustion efficiency meets the target of design and operations of start and stop cyclogram are stable and high frequency combustion instability does not occur.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

The Effect of Various Hot Environments on Physiological Responses and Information Processing Performance Following Firefighting Activities in a Smoke-Diving Room

  • Hemmatjo, Rasoul;Motamedzade, Majid;Aliabadi, Mohsen;Kalatpour, Omid;Farhadian, Maryam
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • Background: Fire service workers often implement multiple duties in the emergency conditions, with such duties being mostly conducted in various ambient temperatures. Methods: The aim of the current study was to assess the firefighters' physiological responses, information processing, and working memory prior to and following simulated firefighting activities in three different hot environments. Seventeen healthy male firefighters performed simulated firefighting tasks in three separate conditions, namely (1) low heat (LH; $29-31^{\circ}C$, 55-60% relative humidity), (2) moderate heat (MH; $32-34^{\circ}C$, 55-60% relative humidity), and (3) severe heat (SH; $35-37^{\circ}C$, 55-60% relative humidity). It took about 45-50 minutes for each firefighter to finish all defined firefighting activities and the paced auditory serial addition test (PASAT). Results: At the end of all the three experimental conditions, heart rate (HR) and tympanic temperature (TT) increased, while PASAT scores as a measure of information processing performance decreased relative to baseline. HR and TT were significantly higher at the end of the experiment in the SH ($159.41{\pm}4.25beats/min$; $38.22{\pm}0.10^{\circ}C$) compared with the MH ($156.59{\pm}3.77beats/min$; $38.20{\pm}0.10^{\circ}C$) and LH ($154.24{\pm}4.67beats/min$; $38.17{\pm}0.10^{\circ}C$) conditions (p < 0.05). There was no significant difference in PASAT scores between LH and MH (p > 0.05). Nonetheless, there was a measurable difference in PASAT scores between LH and SH (p < 0.05). Conclusion: These consequences demonstrate that ambient temperature is effective in raising the physiological responses following firefighting activities. It is therefore argued that further increase of ambient temperature can impact firefighters' information processing and working memory during firefighting activity.

A Comparative Study on the Mechanical Properties of Plywood treated with Several Fire Retardant Chemicals (I) - Effect of Soaking Time on the Static Bending Strength of Treated Plywood - (수종(數種) 내화약제(耐火藥劑)로 처리(處理)된 합판(處理)의 기술적(技術的) 성질(性質)에 관(關)한 비교연구(比較硏究)(I) - 처리합판(處理處理)의 휨강도(强度)에 미치는 침지시간(浸漬時間)의 영향(影響) -)

  • Kim, Jong-Man;Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.20-26
    • /
    • 1984
  • This study was carried out to investigate the influence of chemical type and its retention in the fire-retardant treated plywoods on the static bending strength, a property peculiar to plywood. Being soaked in 20% aqueous solution of $(NH_4)_2SO_4$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$. Borax-Boric acid and Minalith for 3 to 12 hours at three-hour intervals and redried at $120^{\circ}C$ in hot press, the treated plywoods were put to static bending test. The values of chemical treated plywoods in Stress at proportional limit, Modulus of elasticity, Modulus of rupture and Work per unit volume to proportional limit were widely higher than those of water treated plywoods(control) and Borax-Boric acid treatment showed the highest value in the four mechanical data. And the bending strength of fire-retardant treated plywoods increased with the extension of soaking time or the increase of chemical retention in themselves. Borix-Boric acid was the desirable fire-retardant for thin plywood in view of mechanical strength and soaking defects in this study.

  • PDF

Development of a metal-halide lamp's electronic ballast (메탈핼라이드 집어등용 전자식 안정기 개발)

  • Park, Seong-Wook;Bae, Bong-Seong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.116-125
    • /
    • 2013
  • Jigging and angling fishery is prevalent in the East Sea of Korea and this fishery needs many lamps to attract the fish. And the fishing boat uses 24~47 ballasts by the vessel's tonnage to turn on the fishing lamp. A 3.5kW magnetic-type ballast being currently used at many fishing boats can drive two 1.5kW metal-halide lamps. Meanwhile, this ballast has large weight (25kg) and volume. Therefore it is one of reason for the over-consumption of energy and the fire, resulted from overheat and electrical short, occurs occasionally because the ballast is installed at narrow and hot engine room. In addition, most of magnetic ballast has several problems such as periodic condenser replacement, low energy efficiency and making lamp short life, etc. So it is necessary to improve or develop newly the electronic ballast, which has to be smaller, lighter and more efficient. An electronic ballast was designed for the fishing boat by considering duration and electromagnetic interference in the study. Its weight and volume are respectably 40% and 66% compared to current ballast on the basis of PCB. The metal-halide lamp's spectrum of the designed ballast was nearly same to that of the current ballast in the test of lighting. In particular, the light stability was improved and there isn't any radio interference. As mentioned above, it is expected that the developed electronic ballast can replace current magnetic ballast because of many advantages related to energy-saving.

The Actual Conditions and Needs for Housing Remodeling among the Elderly Households with Adult Children (노부모-성인자녀 동거 가구의 주택개조 실태 및 요구)

  • Kim, Mi-Hee;Oh, Ji-Young
    • Journal of the Korean housing association
    • /
    • v.20 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • The purpose of this study was to examine the household characteristics, the actual residential environment of the elderly living with their offsprings together in Gwangju. We also evaluated their satisfaction with the needs for remodeling of their houses and the different opinions about those things between the elderly and their off springs. We used comparative and descriptive T-test in statistical analysis. The results were as follows. There were more families living in the detached houses than those living in the apartments. The average size of the houses was 100.8 square meters. The mean residence period was 13.5 years. The sons were usually the legal householders. The residents who experienced remodeling before reassigned the furniture and installed the bathtub, which was designed to be sat on comfortably in a common. A few residents installed safety system such as alarms for incident fire or gas, convenient knobs for handling and faucets for running hot or cold water separately. After the installation of alarms, convenient knobs of windows or door, Customer satisfaction for those things were quite high. But that for the installation of safety bar were the lowest in contrast. The most things the old wanted to change were to rearrange bedrooms and bathrooms on the first floor and to decorate them in westernized styles. They didn't need to set up safety bars or shower instrument for modulating heights. The second generation wanted to install the blinds or curtains more than the third generations.

Hot Fire Tests of the KSR-III Sub.(I) Engines (KSR-III 축소형(I) 엔진의 연소 시험)

  • Kim, Y.H.;Kim, Y.W.;Moon, I.Y.;Ko, Y.S.;Lee, S.Y.;Ryu, C.S.;Seol, W.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.120-125
    • /
    • 2002
  • In the preceding tests using the KSR-III Sub.(I) engines, it was observed that the heat resistant capability of the engines was not enough for the mission. So Sub.(I) Mod. engines were designed and tested. The Sub.(I) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than twenty experiments were carried on to evaluate engine performance and heat resistance capability with respect to design parameters. In this study, the test results are introduced. Analysing the result of Sub.(I) engine tests, it is found that decreasing the impinging angle, adopting the H-type arrangement(rather than radial type arrangement) and adopting the thermal barrier coating can increase heat resistance capacity substantially. Also, engine performance evaluation is conducted using specific impulse and characteristic velocity parameter. The results show that the performance variation is small(about 5%) and the performance is better in the case of radial arrangement. It is suspected that these phenomena are caused by the change of flame structure atomization mixing characteristic of sprays and the distortion of recirculation zone. Also from the low frequency instability point of view, it is observed that reducing the impinging angle and adopting the H type arrangement can increase the instability characteristics.