• Title/Summary/Keyword: Hot zone

Search Result 305, Processing Time 0.03 seconds

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal - (Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 -)

  • ;;Kazutoshi Nishimoto
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

Edge overcoating and buildup of continuously hot-dip metallized strip (연속 용융도금 강판의 에지 과도금 및 빌드업)

  • 박정렬;전선호;박노범
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.555-560
    • /
    • 1999
  • Gas wiping of continuously hot-dip galvanized coating on steel strip has generated edge overcoating and noise problems. The overcoating of zinc in the edge zone from edge to 50mm inside of the strip along its width was measured and analyzed. The overcoating is thought to occur due to the reduced impinging pressure of wiping gas onto the strip edges by the boundary effect and it can decrease by 50% or more by applying edge baffles when the baffle-to-strip distance is maintained to 20mm or less. The overcoating was compared with edgedrop of the cold-rolled steel substrate. Edge buildup mostly at the edge area 10 to be 20mm from the edge results in if the edgedrop is not sufficient enough to compensate for the overcoating to be flat on the edgedrop or/and if the overcoating is not small enough to the given edgedrop. Edge baffles can reduce effectively this type of edge buildup.

  • PDF

Adjustment of Valve Opening in Ondol Hot Water Distributor (온돌 난방분배기의 개도조정)

  • Hong, Hi-Ki;Kim, Si-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.460-467
    • /
    • 2010
  • In housing units constructed recently in Korea, the length of ondol coil is different in each room, so the flow rate of hot water is adjusted by setting valve opening. If the flow rate is not appropriate for heating load, the room temperature seriously deviates from the set temperature range for comfort. In particular, too small valve opening can induce a noise by cavitation. In order to adjust the valve opening, two methods by zone area and a new method by return temperature rise were modelled and simulated using TRNSYS and EES. As a result, heating energy consumption during one week was the same on three methods, but the room temperature of the new method minimally deviated from the range of set temperature with a low possibility of noise.

Analysis and Improvement of Cooling System for Energy Saving in Data Center Building (데이터센터의 냉방에너지 절감을 위한 냉각시스템 분석 및 개선 방안)

  • Jung, Yong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.314-319
    • /
    • 2011
  • Energy Cost has been rapidly increased with the internal heat gain of data center to keep the temperature condition. But the cooling units for server systems are fully operated to satisfy the indoor temperature condition, it results in the excessive energy consumption. In this study, various cooling systems were studied for data center and cold aisle containment system was proved to be the best solution for server cooling system. Because it protects the cooling zone from the hot aisle space. Effective cooling and prohibition of recirculation air from hot aisle was possible by the cold aisle containment system.

  • PDF

An analysis of deformation behavior on dynamic bulging in the high speed continuous casting (고속 연속주조에 있어서 동적 벌징의 변형거동 해석)

  • 강충길;윤광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1217-1226
    • /
    • 1988
  • This paper shows an deformation behavior of steel cast slabs, which is used to prevent internal cracks of a slab in an unbending zone, in case of hot charge rolling(HCR) and hot direct rolling(HDR). The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure has been computed in terms of creep and elastic-plasticity and for high strand surface temperature and high casting speed V=1.4-2.2m/min. The strain and strain rate distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Prediction of sprinkler activation time in compartment fire (구획화재에서의 스프링클러 작동시간 예측 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.13-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The output of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena. Futhermore, experiments are performed in mock-up with gasoline pool fire in order to evaluate the reliability of the model.

  • PDF

Study on the Reliability of Engineering Ceramics (구조용 세라믹스 강도의 신뢰성 평가에 관한 연구)

  • 김부안;남기우
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.157-162
    • /
    • 1997
  • Silicon Nitride samples with different microstructure were prepared by hot pressing and subsequent heat treatment under N2 gas pressure. The fracture toughness (KIC)of Si3N4 increased with the increase of grain size, but the bending strength of plain specimen($\sigma$F) decreased. The relation between fracture stress($\sigma$c) and equivalent crack length(ae) agreed well with the calculated values by process zone size failure criterion. A probabilistic failure assessment curve is proposed based on both statistical character of $\sigma$F and KIC.

  • PDF

Numerical Simulation of Flow Characteristics in a Heating Furnace (가열로 유동특성에 관한 수치해석)

  • Lee, D.E.;Kim, C.Y.;Kim, S.J.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.511-516
    • /
    • 2001
  • The flow characteristics in a hot mill reheating furnace is numerically simulated in this study. Navier-Stokes equations for conservation of mass, momentum, energy are solved and the standard $k-\varepsilon$ model, mixture fraction/PDF model are used for the turbulent reacting flow in the furnace. Radiation heat transfer is incorporated by the P-1 method with the absorption coefficient evaluated using WSGGM. First, simulation results are obtained for the total furnace region with existing protective dam, and then the calculations are carried out only for the preheating zone in the furnace. In that zone, additional center darn is built in order to control the flow behavior of the inlet air and the combustion gas.

  • PDF