• Title/Summary/Keyword: Hot waste water

Search Result 133, Processing Time 0.023 seconds

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.

A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템 공정설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

Quality Stability of Instant Powdered Soup using Canned Oyster Processing Waste Water (굴통조림 부산물 유래 인스턴트 분말 수프의 품질안정성)

  • KIM Jin-Soo;Heu Min-Soo;HEU Min-Soo;CHO Moon-Lae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.389-393
    • /
    • 2001
  • For an effective utilization, quality stability of instant powdered oyster soup made of canned oyster processing waste water (IPSW) was determined. Instant powdered soup from oyster hot-water extracts (IPSE) was also prepared by mixing hot-water extract powder (15 g) with table salt (5 g), cream powder (19 g), milk replacer (12 g), wheat flour (20 g), corn flour (15 g), starch (5 g), glucose (7.5 g) and onion powder (1.5 g). In preparing IPSW, mixed powder from wash water and boiling liquid waste, instead of powder from hot-water extracts and table salt, was added (powder from boiling liquid waste: powder from wash water= 12: 8) and other additives were added in proportion to those in the IPSE. The moisture content, water activity, peroxide value and fatty acid composition showed little changes during storage of the IPSW. The pH, volatile basic nitrogen content and brown pigment formation increased slightly, while white index decreased slightly during storage of IPSW. No significant difference was observed in the changes of food component during storage between IPSW and IPSE. According to a sensory evaluation, the change in quality of IPSW was negligible during 12 months of storage. from the results of the chemical experiment and sensory evaluation, IPSW packed with laminated film bag (OPP, $20{\mu}m/PE,\;20{\mu}m/paper,\;45g/m^3/PE,\;20{\mu}\;m/Al,\;7{\mu}\;m/PE,\;20{\mu}m$) was revealed to be preserved in good quality during 12 months of storage.

  • PDF

A Study on the Purification of Water-Pool in Irradiated Materials Examination Facility

  • Song, Ung-Sup;Lee, Jong-Heon;Lee, Hong-Gyee;Hong, Kyon-Pyo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.42-50
    • /
    • 2004
  • The pool $(3m{\times}6m{\times}10m{\times}$ in Irradiated Materials Examination Facility is generally used to transport irradiated materials between a moving cask and hot-cell. During the operation in the pool such as loading/unloading the cask, holding specimen and bucket elevation, water maybe contaminated by radioactive or contaminated impurities from irradiated materials. Then, it must be purified and filtered continuously to keep lower radioactivity than that of regulation prescribed by RCA Korea Activity in a part of radioactive contamination control. This paper described radioactive contamination distribution of water as transported materials, which is related to effective operation of purification and filtration system.

  • PDF

A Study on Properties of Waste Wood-Plastic Composite Panels (폐목재-플라스틱을 이용한 복합패널의 특성 연구)

  • Mun, Kyoung-Ju;Choi, Nak-woon;Choi, San-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.85-94
    • /
    • 2004
  • Waste wood-plastic composite panels are made on different hot press molding conditions, and tested for apparent density, water absorption, expansion in thickness and flexural strength. From the test results, regardless of molding temperature and molding time, the apparent density of the composite panels is increased with an increase in the molding pressure, while their water absorption is decreased with an increase in the molding pressure. The flexural strength of the composite panels is markedly increased with increasing molding pressure, molding temperature and molding time, and tends to become nearly constant at a molding temperature of $120^{\circ}C$ and a molding time of 15min.

  • PDF

Incubation of Scenedesmus quadricauda based on food waste compost

  • Kim, Keon Hee;Lee, Jae Han;Park, Chae Hong;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1039-1048
    • /
    • 2020
  • Food waste causes various economic losses and environmental pollution problems such as soil pollution and groundwater pollution. Food waste has been used as a resource in various forms and has been used mostly for feed and composting. This study compared microalgal nutrient medium (BG-11) with food waste compost to determine the possibility of using it as a culture medium. Scenedesmus quadricauda was isolated and cultured in an eutrophic reservoir and incubated for 3 days in distilled water before laboratory use. Food waste compost was produced in two food waste processing facilities, and hot water was extracted in the laboratory to be used for microalgae cultivation. The growth curve of the microalgae was analyzed based on the Chl-a concentration measured during the experiment, and the growth rate of the microalgae grown in the food waste compost was compared with the growth rate of those grown in the nutrient medium. Food waste compost showed a similar growth rate to that of the nutrient medium, and there was a difference depending on the manufacturing facility. The growth of microalgae in such food waste was further amplified when trace elements were added and showed better growth than that of the nutrient media. Particularly, when trace elements were added, the growth rate increased, and the growth period was further extended. Therefore, food waste compost can be sufficiently utilized as a microalgal culture medium, and if trace elements are added, it is considered that microalgae can be more effectively cultured compared to the existing nutrient medium.

A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy (신재생에너지 이용 과채류에 대한 소비자 인식 및 지불의사에 관한 연구)

  • Kim, Seong-Hwi;Lee, Choon-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.485-505
    • /
    • 2021
  • This study investigated consumers' perceptions and willingness to pay (WTP) for fruit and vegetables grown using renewable energy such as solar power, geothermal, waste heat from incinerators, hot water from thermal power plants. To this end, this study conducted an online survey of 1,050 consumers in Seoul, Gyeonggi, and the six metropolitan cities, and the main findings are as follows. First, most of the consumers perceived climate change as a serious problem, and 82.8% recognized the government's declaration of carbon zero was appropriate, which means that the government's active response to climate change is important. Second, on the pros and cons of the use of renewable energy when cultivating fruits and vegetables, opinions in favor of solar power were the highest, followed by geothermal heat, waste heat from waste incineration plants, and thermal power generation hot drainage. Third, at least 28.0% to 41.7% of consumers were willing to purchase fruits and vegetables using renewable energy more expensive than fruits grown using fossil energy such as kerosene. This means that the fruit and vegetable market using renewable energy is valuable as a niche market.

Mechanical Load Performance Measurements of a Low Temperature Differential Stirling Engine with Water-Sprayed Heat Transfer according to Supply Water Flow Rates and Temperatures (스프레이 열전달을 이용한 저온도차 스털링 엔진의 고온수 공급 유량 및 온도에 따른 기계 부하성능 실험)

  • Sim, Kyuho;Jeong, Min-Seong;Lee, Yoon-Pyo;Jang, Seon-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Recently, Stirling engines are emerging as a key device for power conversion of renewable energy or waste energy. This study develops a LTDSE(Low Temperature Differential Stirling Engine) using a water spray for higher heat transfer and performs load performance tests for various flow rates and temperatures of hot water spray for variable engine loads emulated by a mechanical friction device. Internal temperature and pressure, working frequency and inlet and outlet temperature of the supply water are measured. As a result, the increases in flow rate and temperature of hot water respectively enhance the power output, efficiency and the working frequency, while the increasing engine load leads to decreases in working frequency but increases in the pressure amplitude. Eventually, it is revealed there exists a maximum shaft power of the test engine.

Assessment of River Water Quality Contaminated by Abandoned Mine and Hot-Spring using Principal Component Analysis (주성분분석기법을 적용한 온천 및 폐광산 오염원에 대한 하천수질평가)

  • Lee Jae-Young;Sato Yuko;Kang Meea;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.381-390
    • /
    • 2005
  • S City depends on the T River as source water for water supply. Arsenic and boron from the hot-spring waste-water discharged from the hot-spring spa resort and emerging from the fractures of bedrock of the river have been prevalent contaminant of the T River water. This research was conducted to propose the simple and quick surrogate parameter for water quality management easily. And through making hexa-diagram of principal ions in the water samples, existing state of the water and influence of the human activity or geological origin can be figured out. As a results of characteristics of the T River water quality using principal component analysis, the contributory percentages of the 1st, 2nd and 3rd principal components were $40.80\%,\;21.40\%\;and\;11.31\%$, respectively. Therefore it was clarified that the quality of the T River water could be explained by these three principal components. Concentration of the chloride ion, which is one of the characteristics of the hot-spring water, was well correlated to both arsenic and boron concentrations. Hence concentrations of the arsenic and boron in the raw water of the water reatment plant can be predicted by the measurement of concentration of the chloride ion.