• Title/Summary/Keyword: Hot tool

Search Result 287, Processing Time 0.027 seconds

The Characteristics Analysis of Track of Laser Metal Deposition Using AISI M2 Powder (AISI M2 파우더를 이용한 레이저 메탈 디포지션의 트랙 특성 분석)

  • Kim, WonHyuck;Song, MyungHwan;Park, InDuck;Kang, DaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, the characteristics analysis of LMD track, such as including track structure, track wear resistance and track thickness, were analyzed to enhance the deposition efficiency using a diode-pumped disk laser. SKD61 hot work steel plate and Fe based AISI M2 alloy were used as a the substrate and powder for the LMD process, respectively. The laser power, track pitch and powder feed rate among LMD parameters were adopted to estimate the deposition efficiency. As the laser power is increased, heat input and melting pool on the substrate is grown also increases, so resulting in the increased LMD track thickness was increased. Through EPMA mapping analysis of the cross-section in the LMD track, it was observed that all the elements are evenly distributed inside. Therefore, the entire hardness in the LMD track is expected to be almost uniform regardless of location. The characteristics of the LMD specimen were excellent compared to the STD11 specimen in terms of the wear track width and the wear rate as well as the coefficient of friction. Especially the wear rate of LMD specimen has been significantly reduced by 60 % or more. From Based on the experimental results, the prediction formula of LMD thickness was calculated by using laser power, track pitch and powder feed rate.

Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel (열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정)

  • Oh, Do-Won;Park, Ki-Won;Lee, Jun-Boum;Lee, Sang-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Development of Bioactive Substances from Fishery Processing by-products in Jeju (제주 수산가공부산물 유래 기능성 소재 탐색)

  • Kang, Nalae;Lee, WonWoo;Ko, Ju-Young;Kim, Hyun-Soo;Kim, Junseong;Ahn, Yong-Seok;Ko, Chang-Ik;Jeong, Joon Bum;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2014
  • In this study, we investigated the bioactive substances of the Alcalase hydrolysate obtained from fishery processing by-products in Jeju by measuring bioactivities including radical scavenging acitivty, cytoprotective activity against 2,2-azobis-(2-amidino-propane) dihydrochloride (AAPH), and ACE inhibitory activity. This study is important because of utilization of unused fishery processing by-products in Jeju. The Alcalase hydrolysate was prepared through the hot water extraction and enzymatic hydrolysis, and then further separation of the Alcalase hydrolysate was performed by ultrafiltration using 10 kDa molecular weight cut-off membrane. The Alcalase hydrolysate showed the relatively higher DPPH and peroxyl radical scavenging activity ($IC_{50}$ value; 1.30 mg/ml and 0.888 mg/ml, respectively). Also, the Alcalase hydrolysate showed the ACE inhibitory activity with 1.87 mg/ml of $IC_{50}$ value. These biological activities are increased over 1.2 or 2.5 times through the ultrafiltration of the Alcalase hydrolysate. Therefore, the Alcalase hydrolysate obtained from fishery processing by-products in Jeju and the different molecular weight fractions should be given consideration for food and cosmetics ingredient. Furthermore, this research on the utility of fishery processing by-products might be a useful tool into the industry.

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Drone Tech Industry Education for Elderly Workers Linking with Jobs (고령층 일자리연계를 위한 드론테크산업 교육에 관한 연구)

  • Kim, Ki-hyuk;Ahn, Gwi-Im;Lim, Hwan-Seob;Jung, Deok-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2181-2186
    • /
    • 2016
  • Recently, the drone industry rapidly rises to the surface as the new market leading the future, and it seems that the hot UAV drone market shows the similar trend to that of the smartphone. It is expected that the individual application of the drone is quickly diffused as the smartphone roles of camera and game player with the communication medium. For example, the drone is developed mainly as war weapons, but now it is getting close to our real life as the toy or tool for the aerial photography. In this paper, we studied the education for how to bring the aging population to the drone industry. Previously, the controlling skill and taking aerial photography seemed to have nothing to do with citizen seniors. However, we develop the education for try to show any positive relationship between those, in this paper, thus creating more job opportunities for them.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

The Development of the Climatic Design Tool for Energy Efficient Building Design (태양열 축열조가 없는 변유량 제어 방식의 지역난방용 태양열시스템 실증시험연구)

  • Baek, Nam-Choon;Shin, U-Chul;Lee, Jin-Kook;Yoon, Eung-Sang;Yoon, Suk-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • In this study, the design of the solar heating system for district heating as well as it's operating characteristics and the performance analysis was carried out. This solar district heating system was composed of two different types of solar collector circuit, flat plate and vacuum tube solar collector, in a system. This system supply constant temperature of hot water without solar buffer tank. For this, the proportional(variable flow rate) control was used. The experimental facility for this study was used the Bundang district solar heating system which was installed in the end of 2006. The operating characteristics and behaviour of each collector circuits are investigated especially for the system design and control. The yearly solar thermal efficiency is 47.5% on the basis of aperture area and 39.8% on the basis of gross area of collector. As a result this solar heating system without solar buffer tank and with proportional controller was testified a very effective and simplified system for district heating. It varied especially depend on the weather condition like as solar radiation and ambient temperature.

An Analysis of Façade Panel Characteristics of UN Studio's Office Projects (유엔스튜디오 업무시설 외피 패널의 형태적 특성 분석)

  • Ko, Sung Hak
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.8
    • /
    • pp.23-34
    • /
    • 2019
  • The façade, a fundamental function as a skin that protects human life from external environment such as cold and hot weather, snow, rain, and wind, etc, has served as a media for communication between indoor space of the building and outside space. From the media for communication point of view, the approach to envelope design, in which environmental elements are transmitted internally through the filtering of external environments, has been evolving in various ways from the past to the present. Today, modern architecture technologies including curtain wall systems and user-friendly computer programming and environmental analysis programs demonstrate a differentiated approach to envelope design related to the indoor environment. For this reason, it is worth noting that the envelope design factors and trends that appear variously in the UNStudio's projects before and after the 2000s. The factors reflected in the envelop design in conjunction with the indoor environment obtained through the case study of the UNStudio's office projects were daylight environment, thermal environment, ventilation, noise, privacy and view, and consideration for daylight environment and thermal environment was reflected in many cases through the case study. Looking at the changes in the diagrams in order of year, it can be seen that the envelope design using the environmental analysis tool has been performed since 2006. This is a clue to show the envelop design changes from the conceptual method to the data-based one. The diagrams and analysis results related to the envelop design showed that the thermal environment related to solar radiation was the most, and no diagrams and analysis related to the indoor illumination were found. Since 2010, PV panel installation has been shown in the envelope design, which can be found in the increased efficiency of PV panels due to the technological advances and the decrease in production cost.

Development of Optimum Design Method for Geothermal Performance based on Energy Simulation (지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발)

  • Moon, Hyeongjin;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.