• 제목/요약/키워드: Hot restoration mechanism

검색결과 7건 처리시간 0.017초

$SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구 (A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$)

  • 고병철;홍흥기;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향 (The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy)

  • 고병철;박도현;유연철
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향 (Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy)

  • 권용환;조상현;유연철
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향 (The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation)

  • 고병철;김종헌;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

$SiC_p/Al-Si$ 복합재료의 고온변형 특성 (High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites)

  • 전정식;고병철;김명호;유연철
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

마그네슘 합금의 온간 동적재결정 구성방정식 최적화 (Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature)

  • 조윤희;윤종헌
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.263-268
    • /
    • 2017
  • 상용 마그네슘 합금의 경우, 상온에서 낮은 성형성을 갖기 때문에, 온간 성형 조건 하에서 성형 공정을 수행하는 것이 일반적이다. 마그네슘 합금은 온간 성형 과정 중에 동적 재결정(dynamic recrystallization, DRX)이 발생하여, 초기 결정립 사이즈가 급격하게 작아지며, 내부 전위 밀도가 낮아지게 된다. 이에 따라, 유동 응력 곡선은 세 단계의 복잡한 변형 경화 및 연화 현상을 보이게 된다. 첫 번째 구간에서는 변형률이 증가함에 따라, 가공 경화에 의해 응력이 증가하는 경향을 보이며, 두 번째 구간에서는 동적 재결정 현상에 의한 가공 연화로 응력이 갑작스럽게 감소한다. 세 번째 구간에서는 가공 경화와 가공 연화 사이의 평형에 의해, 응력이 일정하게 나타난다. 본 연구에서는, 성형 온도 $300^{\circ}C$, 변형률 속도는 0.001, 0.1, 1, 10/sec에서 AZ80 합금의 구성 방정식의 18개 변수들을 체계적으로 최적화하며, 유동 곡선의 정확도를 높일 수 있는 방식에 대해 제안하려고 한다. 또한 AZ80외에 AZ61도 추가적으로 최적화여 본 논문에서 제안한 최적화 방식의 성능을 증명하였다.

MANET 환경 하에서 멤버 노드간의 협력에 의해 분산된 인증서를 이용한 인증서비스에 관한 연구 (MANET Certificate Model Using Distributed Partial-Certificate with Cooperation of Cluster Member Node)

  • 이대영;송상훈;배상현
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.206-215
    • /
    • 2007
  • Ad-Hoc 네트워크 기술이 미래의 이동 인터넷 기술로서 이동통신망(Mobile Network) 뿐만 아니라 공중무선랜망(WPAN) 그리고 유비쿼터스 망 등에 광범위하게 활용되기 위해서는 개선 및 보완되어야 할 기술적인 문제들이 많다. 특히, 최근 네트워크 보안의 허점을 이용한 보안상 공격이 급증하고 있는 상황에 반하여 Ad-Hoc 라우팅 프로토콜 연구 대부분은 보안 위협 요소를 배제하고 안전한 환경을 가정한 채 수행되고 있다. 또한 Ad-Hoc 네트워크가 무선 매체 특성상 더욱 많은 보안상 위협에 노출되기 쉽고 유선에서 사용되던 보안 메커니즘을 그대로 적용되는 것이 부적합함을 고려할 때 Ad-Hoc 보안에 관한 연구는 더욱 활발히 이루어져야 할 것이다. 따라서 본 논문에서는 Ad-Hoc 네트워크의 특성을 고려하여 중앙 집중적인 인증기관이나 키 분배센터에 의존하지 않고 클러스터를 구성하고 있는 멤버 노드들 간의 협력적이고, 분산된 인증서를 이용한 인증 서비스를 제공할 수 있는 모델을 제안한다. 아울러 시뮬레이션을 통해 제안한 모델의 확장성과, 견고성을 평가해 본다.