• 제목/요약/키워드: Hot firing test

검색결과 103건 처리시간 0.019초

Design and Review on the Propellant Feed System for small LRE (소형액체로켓엔진의 공급시스템 설계 및 고찰)

  • Park, Jong-Hee;Song, Yi-Hwa;Choi, Young-Hwan;Kim, Jung-Hoon;Oh, Eung-Hwan;Park, Kye-Seung;Park, Hee-Ho;Kim, Yoo;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2003
  • The propellant feed system for small LRE of the thrust 250kgf designed and fabricated. Design on the propellant feed system is reflected with analysis of old system. Performance of the propellant feed system was proved by cold test and hot firing test. Consequencely, New feeding system found out more stable than old feeding system.

  • PDF

Development of Extra-large Hydraulic Breaker (초대형 유압브레이커 개발)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권5호
    • /
    • pp.3081-3086
    • /
    • 2015
  • Development of a extra-large hydraulic breaker, which could be used for a 100 ton-class excavator were carried out Hot-firing tests were carried out. Before designing a hydraulic breaker, the analysis method to predict the performance such as impact energy and impact rate were studied. Based on the analysis result, the design and manufacture of a extra-large hydraulic breaker were performed, and the breaker were confirmed to operate successfully. The data of impact energy and impact rate were measured during the operation of the breaker, and were compared with the analysis result. The analysis result of impact rate anticipated well the test data, but that of impact energy showed a large difference with the test data. The extra-large hydraulic breaker were successfully developed and the analysis method of impact energy will be updated taking into account friction, hydraulic circuit, etc.

Test & Evaluation for the Configuration Optimization of Thrust Chamber in 70 N-class N2H4 Thruster (Part II: Pulse-mode Performance According to the Chamber Length Variation) (70 N급 하이드라진 추력기의 추력실 최적설계와 시험평가 (Part II: 추력실 길이변화에 따른 펄스모드 성능특성))

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제18권1호
    • /
    • pp.50-57
    • /
    • 2014
  • A ground hot-firing test (HFT) was conducted to take out the optimal design configurations for the thrust chamber of 70 N-class liquid rocket engine under development. Monopropellant grade (purity: ${\geq}98.5%$) hydrazine was adopted as a propellant for the HFT, and three kinds of thrust chambers having characteristic lengths ($L^*$) of 2.79, 2.95, and 3.13 m were selected for their performance evaluation. It is revealed through the test and evaluation that the increase of the $L^*$ leads to a performance degradation in the test condition specified, and pulse response performance of the development model shows superior characteristics to commercialized hydrazine thrusters.

Combustion Test Results of 1/2.5-scale Thrust Chamber for 75tonf-Class Liquid Rocket Engine (75톤급 액체로켓엔진 1/2.5-scale 연소기 연소시험 결과)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.69-73
    • /
    • 2009
  • Combustion test results of 1/2.5-scale thrust chamber for 75tonf-class liquid rocket engine were described. The thrust chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion ratio of 12. The combustion tests were conducted to verify the combustion performance, the regenerative cooling performance and the durability of thrust chamber at design point condition, and then were performed to confirm the operation and the combustion performance at low combustion pressure condition. All the tests had been successfully executed without the damage of the hardware. These test results present a possibility of hot firing test at low combustion pressure condition, and can be used as fundamental data to predict the combustion performance at design point condition for 75 tonf thrust chamber.

  • PDF

An Experimental Study on Cooling Characteristics for Uni-element Injector face according to the Swirl Chamber in Fuel Injector (연료 인젝터 스월 챔버 유무에 따른 단일 인젝터 페이스 냉각 특성 연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Yang, Jae-Jun;Ko, Young-Sung;Kim, Yoo;Kim, Ji-Hoon;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2007
  • We made two injectors that were equal to all design except for existence or nonexistence of swirl chamber of fuel part, because we want to find cooling characteristics at the injector face according to existence or non existence of swirl chamber of fuel part. And we set regenerative cooling channel in injector face for protecting injector face for prolonged combustion time. Two injectors were performed hot firing test, and then we compared cooling characteristics of two injectors. Also we compared O/F ratio effects on cooling characteristics and combustion characteristics.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

Combustion Performance Tests of Sub-scale Combustor for Liquid Rocket Engine (다종의 축소형 고압연소기 연소성능시험)

  • Kim Seung-Han;Seo Seonghyeon;Moon Il-Yoon;Seol Woo-Seok;Cho Gwang-Rae;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.259-264
    • /
    • 2004
  • The critical component of combustor having high combustion efficiency for high performance liquid rocket engine is injector. The results of design and hot firing tests of six sub-scale combustors which have respectively an impinging type injector(1ea.), an bi-propellant swirl closed injector(1ea.), and hi-propellant swirl mixed injector(4ea.) were described in this paper. The combustion test were successfully performed. The combustion efficiency have higher value than predicted value and high frequency combustion instability does not occur.

  • PDF

Open-Loop Control of Combustion Instability in Hot-Firing Test Using Gaseous Hydrocarbon Fuel (기체 탄화수소 연료 연소시험에서 연소불안정의 개루프 제어)

  • Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제22권6호
    • /
    • pp.28-36
    • /
    • 2018
  • A study was conducted to apply open-loop control to the combustion instability in a dump combustor using gaseous hydrocarbon fuels. Control power and frequency were varied by employing a loudspeaker under combustion conditions with similar characteristic chemistry times of the fuels. In the case of open-loop control where the frequency was identical to the combustion instability frequency, the open-loop control power affected the control performance. Results obtained from conducted open-loop control tests, where the frequency was different from the combustion instability frequency, show that setting the open-loop control frequency similar to the combustion instability frequency is effective.

Combustion Characteristics of Fuel-rich Gas Generator with Impinging Injector for a Liquid Rocket Engine (액체로켓엔진에서 충돌형 분사기 형태의 연료과잉 가스발생기 연소특성)

  • Han, Yeoung-Min;Kim, Seung-Han;Lee, Kwang-Jin;Moon, Il-Yoon;Seol, Woo-Seok;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제33권6호
    • /
    • pp.64-70
    • /
    • 2005
  • The overall results of hot firing tests of fuel-rich gas generator with impinging injector at design and off-design points are described. The gas generator consists of an injector head with impinging injector, a water cooled combustor wall, a turbulence ring to enhance mixing, an instrument ring measuring temperature and pressure and a nozzle. The combustion tests were successfully performed without damage of gas generator. Test results show that the outlet temperature is not dependent on residence time of hot gas within 4~6msec but dependent on chamber pressure. The relation between outlet temperature and combustion efficiency resulting from measured pressure, mass flow rate and area of nozzle throat is shown. The overall O/F ratio is the critical parameter to determine the outlet temperature and the linear correlation between two parameters is established.

An experimental study on the liquid rocket combustion chamber cooling (액체로켓 연소실 냉각에 관한 실험적 연구)

  • Kim, B.H.;Park, H.H.;Jeong, Y.G.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제5권2호
    • /
    • pp.1-7
    • /
    • 2001
  • To protect combustion chamber from high temperature combustion gas, regenerative cooling is used for most liquid rocket engine. Although regenerative cooling is the most effective way to protect the chamber from high heat flux, realization of this system requires detail analysis, manufacturing technique and high cost. To demonstrate the possibility of applying regenerative cooling to a real rocket engine, the hot fire test has been carried out for the sub-scale liquid rocket with the water cooling system. The main purpose of the test is to identify the problem area of design, safety and cost effective manufacturing technique. The coolant passage was 3 mm in width and wall thickness was 1 mm with stainless steel. Maximum combustion time and pressure were 60 seconds and 400 psi, respectively. The flow rate of coolant was reduced gradually from 2 kg/s to 0.12 kg/s throughout firing test, combustion chamber was visually examined and no dwfect was observed.

  • PDF