• 제목/요약/키워드: Hot blow forming

검색결과 6건 처리시간 0.021초

핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계 (Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum)

  • 김민기;이정흠;고대철
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

차량용 블로우 모터 케이스 2축 굽힘 공정의 치수 정밀도 향상에 관한 연구 (A Study on Improvement of Dimensional Accuracy in 2-axis Bending for Automotive Blow Motor Case)

  • 권일근;김국용;박준우
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.419-427
    • /
    • 2018
  • In case high strength steels are applied for press-formed automotive parts, it is very difficult to secure forming accuracy due to large springback compared to moderate strength steels. In this study, a repetitive step-wise forming analyses based on secant method was proposed as the die design method for mandrel(bending tool) for the 2-axis bending equipments. A bending die with circular mandrel was designed for the DP780 blow motor case of which diameter and thickness are 70.8mm and 2.0mm respectively. Forming tests were performed to verify the validity of established die design and the results were compared with that of conventional HGI(Hot galvanized iron steel) blow motor case. For additional improvement in forming accuracy, an elliptical mandrel was proposed and its validity was verified using forming analyses based on secant method.

열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구 (Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming)

  • 이경민;고건영;이현철;김동옥;이윤교;김정섭;송종호
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화 (Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718)

  • 최홍석;고대철;김병민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

대형 크랭크샤프트의 형단조에 관한 실험적 및 수치적 연구 (Experimental and Numerical Study on Closed Die Hot Forging of a Large Crankshaft)

  • 조범재;이민철;김홍태;박태현;제갈영진;최인수;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2008
  • We apply a closed die forging technology to a large crankshaft of which forging weight amounts to 850kg. 40ton counter-blow hammer forging machine is used. The forging process is optimized to reduce the forming load using finite element simulation. AFDEX 3D is used for forging simulation. The experiment is compared with finite element prediction and a good agreement is observed. The successful development of a large crankshaft by the closed die forging technology will contribute to opening a new area of closed-die forging application and to enhancing competitiveness of national machinery industries especially including ship part and power generation industries.

  • PDF

가스압력을 이용한 자유벌징에서 성형양 최대화를 위한 두께 분포 최적화 (Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height)

  • 유준태;윤종훈;이호성;윤성기
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.899-904
    • /
    • 2014
  • 자유벌징에 있어서 성형 높이를 최대화하기 위하여 블랭크의 두께 분포를 최적화 하였으며, 등가정하중을 이용한 구조최적화법을 사용하였다. 두께형상은 부드러운 곡선으로 나타내기 위하여 베지어곡선을 사용하였고 제어점의 위치가 설계변수이며, 최대 변형률을 일정 값으로 제한하였다. 사용된 소재는 인코넬 718 이며 최적화된 두께분포로 가공된 블랭크를 이용한 자유벌징 시험을 수행하여 평판형 블랭크를 사용한 결과보다 22% 더 높은 성형 높이를 얻었다. 최적화결과에서 예측된 변형형상, 정점에서의 변형 경향, 두께분포가 실험에서 얻은 결과와 유사하여 최적화 과정의 유효성을 입증하였고, 최적화 결과가 실제 구현될 수 있음을 검증하였다.