• Title/Summary/Keyword: Hot Spots

Search Result 255, Processing Time 0.025 seconds

Hot Spots on Tc-99m MAA Perfusion Lung Scan (Tc-99m 거대응집알부민을 이용한 폐관류 스캔에서 관찰되는 다발성 열소)

  • Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.288-290
    • /
    • 2001
  • A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings (Fig. 1, 2). A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities (Fig. 3). Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique or by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear $borders^{1-3)}$. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan.

  • PDF

Detecting Crime Hot Spots Using GAM and Local Moran's I

  • Cheong, Jin-Seong
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Scientific analysis of crime hot spots is essential in preventing and/or suppressing crime. However, results could be different depending on the analytic methods, which highlights the importance of choosing adequate tools. The purpose of this study was to introduce two advanced techniques for detecting crime hot spots, GAM and Local Moran's I, hoping for more police agencies to adopt better techniques.GAM controls for the number of population in study regions, but local Moran's I does not. That is, GAM detects high crime rate areas, whereas local Moran's I identifies high crime volume areas. For GAM, physical disorder was used as a proxy measure for population at risk based on the logic of the broken windows theory. Different regions were identified as hot spots. Although GAM is generally regarded as a more advanced method in that it controls for population, it's usage is limited to only point data. Local Moran's I is adequate for zonal data, but suffers from the unavoidable MAUP(Modifiable Areal Unit Problem).

Major environmental factors and traits of invasive alien plants determining their spatial distribution

  • Oh, Minwoo;Heo, Yoonjeong;Lee, Eun Ju;Lee, Hyohyemi
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.277-286
    • /
    • 2021
  • Background: As trade increases, the influx of various alien species and their spread to new regions are prevalent and no longer a special problem. Anthropogenic activities and climate changes have made the distribution of alien species out of their native range common. As a result, alien species can be easily found anywhere, and they have nothing but only a few differences in intensity. The prevalent distribution of alien species adversely affects the ecosystem, and a strategic management plan must be established to control them effectively. To this end, hot spots and cold spots were analyzed according to the degree of distribution of invasive alien plants, and major environmental factors related to hot spots were found. We analyzed the 10,287 distribution points of 126 species of alien plants collected through the national survey of alien species by the hierarchical model of species communities (HMSC) framework. Results: The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as AUC values, respectively. The hot spots of invasive plants were found in the Seoul metropolitan area, Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju island. Generally, the hot spots were found where the higher maximum temperature of summer, precipitation of winter, and road density are observed, but temperature seasonality, annual temperature range, precipitation of the summer, and distance to river and sea were negatively related to the hot spots. According to the model, the functional traits accounted for 55% of the variance explained by the environmental factors. The species with higher specific leaf areas were more found where temperature seasonality was low. Taller species preferred the bigger annual temperature range. The heavier seed mass was only preferred when the max temperature of summer exceeded 29 ℃. Conclusions: In this study, hot spots were places where 2.1 times more alien plants were distributed on average than non-hot spots (33.5 vs 15.7 species). The hot spots of invasive plants were expected to appear in less stressful climate conditions, such as low fluctuation of temperature and precipitation. Also, the disturbance by anthropogenic factors or water flow had positive influences on the hot spots. These results were consistent with the previous reports about the ruderal or competitive strategies of invasive plants instead of the stress-tolerant strategy. The functional traits are closely related to the ecological strategies of plants by shaping the response of species to various environmental filters, and our result confirmed this. Therefore, in order to effectively control alien plants, it is judged that the occurrence of disturbed sites in which alien plants can grow in large quantities is minimized, and the river management of waterfronts is required.

Three-dimensional Simulation of Hot spots in Disk Brakes (디스크 브레이크의 적열점에 관한 3차원 시뮬레이션)

  • 이일권;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.211-218
    • /
    • 2000
  • Hot spot behaviors on the disk-pad contact surface during a braking operation have been analyzed for a ventilated disk brake using the finite element method. Hot spots which were studied using a coupled thermal-mechanical analysis technique are influenced by all of the mechanical, thermal, elastic and plastic processes that are involved in braking cycles, but their temperature gradients are most affected by rubbing speeds, braking forces, and design parameters between the disk and the pad. Undesirable hot spots that are generated by local thermoelastic instabilities are intended to be removed by optimized design parameters and material properties. In this study, a three-dimensional numerical method for the demonstration of hot spot behaviors has been applied to the rubbing surfaces between the disk and the pad.

  • PDF

Temperature Measurement of the Contact Surface from the Analysis of Temperature Distribution of the Hot Spots (열원의 온도분포 해석을 통한 접촉표면의 온도측정)

  • 정동윤
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 1993
  • A method has been developed to measure the surface temperature in a sliding tribosystem. The determination of the surface temperature was inferred from the temperature of hot spots which were generated by frictional heat. The temperature of hot spots was determined by regressing those digitized data on Gecim-Winer's theoretical model. The experimental results are discussed considering the important factors such as PV and frictional heat. The surface temperature rise is related to the thermal conductivity in low PV range. As PV increases, it reaches nearly constant value called the critical temperature.

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Testing of Interaction Patterns for Hot Spots in an Object-oriented Framework (객체 지향 프레임웍의 가변부위에 대한 상호작용 패턴의 테스트 방법)

  • Roh, Sung-Hwan;Jeon, Tae-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.592-600
    • /
    • 2005
  • Systematically extracting the test patterns of hot spots in an object-oriented software framework is a prerequisite for thoroughly testing the framework's functionality in a variety of contexts in which the framework is extended for reuse. This paper proposes a method for analyzing the design patterns and extracting the test patterns from the interaction test patterns of hot spots in an object-oriented framework. Based on the design pattern of the framework's hot spot, our method captures the object behavior allowed in that hot spot by means of statecharts, which are then used to generate the interaction test patterns and test cases. The generated test patterns and test cases can be applied repeatedly to applications which are built from extending the framework.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Hot Spot Analysis on Brake Disc Using Infrared Camera (적외선카메라를 이용한 제동 디스크 열크랙 분석)

  • Kim, Jeong-Guk;Goo, Byeong-Choon;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.964-968
    • /
    • 2008
  • Infrared thermography using high-speed infrared camera has been recognized as a powerful method for various potential applications, such as nondestructive inspection, failure analysis, stress analysis, and medical fields, due to non-contact, high-speed, and high spatial resolution at various temperature ranges. In this investigation, damage evolution due to generation of hot spots on railway brake disc was investigated using the infrared thermography method. A high-speed infrared camera was used to measure the surface temperature of brake disc as well as for in-situ monitoring of hot spot evolution. From the thermographic images, the observed hot spots and thermal damage of railway brake disc during braking operation were qualitatively analyzed. Moreover, in this investigation, the previous experimental and theoretical studies on hot spots phenomenon were reviewed, and the current experimental results were introduced and compared with theoretical prediction.

  • PDF

Numerical Study on the Hot Spots of Friction Surface in Disk Brakes (디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.