• Title/Summary/Keyword: Hot Rolling Process

Search Result 227, Processing Time 0.026 seconds

Hot Forming Design of a CAM for Vessel Engine (선박엔진용 캠의 열간 성형공정설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.417-420
    • /
    • 2009
  • The hot forming process of a CAM for vessel engine was designed by finite element (FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and flow stability and/or instability criteria. From the processing map, the initial heating temperature was determined as $1200^{\circ}C$. FE analysis was simulated to predict the formation of rolling defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

  • PDF

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling (후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향)

  • Yim, H.S.;Joo, B.D.;Lee, H.K.;Seo, J.H.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate (니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석)

  • C. Kim;S.J. Bae;H. Lee;H.J. Bong;K.S. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Energy dissipation by particle sloshing in a rolling cylindrical vessel (분체슬로싱 현상에 의한 원통형 용기에서의 에너지 소실)

  • Lee, Soo-Hyuk;Heo, Sung-Mo;Cho, Hye-Min;Son, Hyunsung;Jeong, Seong-Min;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.62-68
    • /
    • 2010
  • In the engineering field, sloshing in rolling vessel is a hot issue because of the connection with ship stability problem. The sloshing phenomena also can be utilized in the field of structure or facility vibration damper. This paper explores the possibility which sloshing of multi-particles can be used to dissipate energy in a rolling container. This energy dissipation can be utilized to the application of rotating damper. Some of the parameters expected to dissipates energy, such as vessel size, particle size, mass fraction and ramp height, have been experimentally and theoretically studied.

Effect of Roll Gap Change of Oval Pass on Interfacial Slip of Workpiece and Roll Pressure in Round-Oval-Round Pass Rolling Sequence

  • Lee, Youngseog;Bayoumi, Laila-Salah;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.492-500
    • /
    • 2002
  • This paper presents a study of the effect of varying the roll gap of oval pass in round-oval-round pass sequence on the interracial slip of workpiece, entrance and exit velocities, stresses and roll load that the workpiece experiences during rolling, by applying analytical method, finite element simulation and verification through hot bar rolling tests. The results have shown that the roll gap variation of oval pass affects the interfacial slip of workpiece along the groove contact and the specific roll pressure. The optimum conditions in terms of minimum interfacial slip and minimum specific roll pressure, which might influence the maximum groove life, is obtained when the subsequent round pass is completely filled.

Development of Wave Prediction Model in Flat Rolling (압연 중 급준도 모델 개발)

  • Kim, J.S.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.48-51
    • /
    • 2009
  • Excessive wavy surfaces formed by a cold or hot-rolling process in a thin plate degrade the value of the plate significantly, which is called flatness problem in the industry. It is a result of post-buckling due to the residual stress caused by the rolling process. A unique difficulty of the problem as a buckling problem is that the buckling length is not given but has to be found. a new approach is developed to solve the flatness problem by extending a classic post-buckling analysis method based on the energy principle. The approach determines the buckling length and amplitude. The new solution approach can be used to determine the condition for the maximum rolling production that does not cause the flatness problem.

  • PDF

Prediction of Ski-Effect in Plate Rolling Process using Neural Network Algorithm (후판 압연에서 신경망 알고리즘을 이용한 스키 예측)

  • Park, J.S.;Na, D.H.;Jung, S.H.;Hur, S.M.;Choi, H.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.250-257
    • /
    • 2013
  • A series of finite element analyses of the rolling process were performed and a neural network algorithm was employed to calculate the amount of ski-effect for an arbitrary thickness of incoming material in the roll gap. Pilot hot plate rolling tests were also conducted to verify the usefulness of the finite element analyzes conducted in this study. In these experiments, plates with thicknesses varying from 25 to 65 mm were tested. In addition, a number of rolling reductions of up to 31% were examined. Finally, a number of circumferential upper and lower rolls were investigated. Experimental validations demonstrated that the neural network algorithm predicted the proper amount of ski when rolling conditions(material thickness, reduction ratio, roll velocity differential) changed arbitrarily.

Construction of Energy Model on Hot Rolling Process (열간압연공정 에너지 사용 모델 기술개발)

  • Hong, Jongheui;Lee, Jinhee;Shin, Gihoon;Kim, Seongjoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.265-267
    • /
    • 2020
  • 본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.

  • PDF