• Title/Summary/Keyword: Hot Pressing (HP)

Search Result 15, Processing Time 0.02 seconds

The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride ($Y_3Al_5O_{12}$ 첨가가 질화규소 세라믹스의 제조 및 그 기계적 특성에 미치는 영향)

  • Noh, Sang-Hoon;Moon, Chang-Kwon;Jeong, Hae-Yong;Seo, Won-Chan;Yoon, Han-Ki;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.95-100
    • /
    • 2007
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as a sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, and 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750 and $1800^{\circ}C$ for 2 h. The process was performed under different process pressures of 30 and 45 MPa. Mechanical properties (density, strength, hardness, and fracture toughness) were investigated as a function of the $Y_3Al_5O_{12}$ content in $Si_3N_4$. $Si_3N_4\;-Y_3Al_5O_{12}$ ceramics showing similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was considerably higher than that of $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics.

Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics (ZrB2-SiC 세라믹스의 미세구조와 기계적 물성에 미치는 B4C 첨가효과)

  • Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Kyung-Ja;Nahm, Sahn;Kim, Seong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.578-582
    • /
    • 2010
  • $ZrB_2$ has a melting point of $3245^{\circ}C$ and a relatively low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultrahigh temperature environments over $2000^{\circ}C$. Beside these properties, $ZrB_2$ is known to have excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. In order to enhance such oxidation resistance, SiC was frequently added to $ZrB_2$-based systems. Due to nonsinterability of $ZrB_2$-based ceramics, research on the sintering aids such as $B_4C$ or $MoSi_2$ becomes popular recently. In this study, densification and high-temperature properties of $ZrB_2$-SiC ceramics especially with $B_4C$ are investigated. $ZrB_2$-20 vol% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. Mixed powders were sintered using hot pressing (HP). With sintered bodies, densification behavior and high-temperature (up to $1400^{\circ}C$) properties such as flexural strength, hardness, and so on were examined.

Fabrication of TiAl Alloys by Mechanical Milling and Spark Plasma Sintering (기계적 분쇄화 및 스파크 플라즈마 소결에 의한 TiAl 합금의 제조)

  • Kim, M.S.;Kim, J.S.;Hwang, S.J.;Hong, Y.H.;Oh, M.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • In the present study, newly developed spark plasma sintering(SPS) technique was introduced to refine the grain size of ${\gamma}$-based TiAl intermetallic compounds. Ti-46Al-1.5Mo and Ti-46Al-1.5Mo-0.2C(at%) prealloyed powders were produced by mechanical milling(MM) in high-energy attritor. The mechanically milled powders were characterized by XRD and SEM for the microstructural evolution as a function of milling time. And then, the MMed powders were sintered by both spark plasma sintering and hot pressing in vacuum (HP). After the sintering process, MM-SPSed specimens were heat-treated in a vacuum furnace (SPS-VHT) and in the SPS equipment(MM-SPS) for microstructural control. It was found from microstrutural observation that the microstructure consisting of equiaxed ${\gamma}$-TiAl with a few hundred nanometer in average size and ${\alpha}_2-Ti_3Al$ particles were formed after both sintering processes. It was also revealed from hardness test and three-point bending test that the effect of grain refinement on the hardness and bending strength is much higher than that of carbon addition. The fully lamellar microstructures, which is less than $80{\mu}m$ in average grain size was obtained by SPS-VHT process, and the fully lamellar microstructure which is less than $100{\mu}m$ in average grain size was obtained by MM-SPS for a relatively shorter heat-treatment time.

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling (반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화)

  • Park, Eun-Bum;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.171-179
    • /
    • 2018
  • Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.

Effect of amount of magnesia on wear behavior of silicon nitride (마그네시아 양이 질화규소의 마모거동에 미치는 영향)

  • 김성호;이수완;엄호성;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • The microstructure of ceramic composite has been found to be governed by the type and amount of the secondary phase, the sintering aid, and the sintering conditions such as sintering temperature, pressure and holing time. Moreover, tribological properties are strongly dependent on microsturcture of composite and operating conditions. In this study, silicon nitride with various amount of magnesia as a sintering aid were prepared and sintered by a hot pressing (HP) technique. Microstructure, mechanical properties (hardness, strength, and fracture toughness), and tribological properties in different environments of $Si_{3}N_{4}$ (in air, water, and paraffine oil) were investigated as a function of MgO content in $Si_{3}N_{4}$. As increasing the amount of MgO in $Si_{3}N_{4}$, the glassy phase in the grain boundaries enlarged the $\beta$-phase elongated grains, and also degraded the Hertzian contact damage resistance. Tribological behaviors in air was seemed to be determined by fracture toughness of $Si_{3}N_{4}$, and those in water and paraffin oil was seemed to be determined by hardness as well as strength. Since glassy grain-boundary phase (MgO) in $Si_{3}N_{4}$ expected to be reacted with water during sliding, such tribochemical reaction reduced wear. In paraffin oil under a higher applied load, the initial sliding dominated wear rate because of Hertzian contact damage.

  • PDF