• Title/Summary/Keyword: Hot Glass

Search Result 193, Processing Time 0.032 seconds

A study on the microstructure of cordierite glass-ceramics composites containing $Si_3{N_4}$ whisker ($Si_3{N_4}$휘스커 첨가량에 따른 코디에라이트 glass-ceramics 복합체의 미세구조)

  • 한병성;최효상
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Cordierite based glass ceramics has become an electronic substrate material for electronic circuits and the use of whickers for improving strength and toughness is evident. Pure cordierite containing 15 vol.% silicon nitride were sintered by hot-prossing and it has above 99% density. Especially, it is assumed that toughening increasing at the more high sintering temperature relevants to the glass phase increasing, as showned in the roughness of the fracture surfaces. It was directionally dependent of whisker drirection during processing.

  • PDF

Mg-Y-Cu Bulk Metallic Glass Obtained by Mechanical Alloying and Powder Consolidation

  • Lee, P.Y.;Hsu, C.F.;Wang, C.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.950-951
    • /
    • 2006
  • [ $Mg_{55}Y_{15}Cu_{30}$ ] metallic glass powders were prepared by the mechanical alloying of pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these $Mg_{55}Y_{15}Cu_{30}$ amorphous powders was investigated using the differential scanning calorimeter (DSC). $T_g$, $T_x$, and ${\Delta}T_x$ are 442 K, 478 K, and 36 K, respectively. The as-milled $Mg_{55}Y_{15}Cu_{30}$ powders were then consolidated by vacuum hot pressing into disk compacts with a diameter and thickness of 10 mm and 1 mm, respectively. This yielded bulk $Mg_{55}Y_{15}Cu_{30}$ metallic glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy matrix. The pressure applied during consolidation can enhance thermal stability and prolong the existence of amorphous phase within $Mg_{55}Y_{15}Cu_{30}$ powders.

  • PDF

En Experimental Study on t he Properties of Mortar Containing Recycled Glass (재생유리를 혼입한 모르터의 특성에 관한 실험적 연구)

  • 배수호;정영수;석윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.36-41
    • /
    • 1998
  • Recently, it has been reported that recycling of wasted glasses should be a hot issue in related business field. Thus, the purpose of this experimental research is to recycle wasted glasses by substituting for the cement in mortar and concrete. As a pilot test, workability and the strength of mortar with recycled glass have been tested and analyzed according to replacement ratio of recycled glass with grain size of them. As a result, considering the workability and the strength of mortar containing recycled glass, the existence of the optimum replacement ratio and grain size of them have been obtained.

  • PDF

Numerical Simulation for Pressing Process of Hot glass (고온 유리의 프레스 성형 공정 시뮬레이션)

  • Ji Suk Man;Choi Joo Ho;Kim Jun Bum;Ha Duk Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.205-213
    • /
    • 2005
  • This paper addresses a method for numerical simulation in the pressing process of hot glass. Updated Lagrangian finite element formulations are employed for the flow and energy equations to accommodate moving meshes. The model is assumed axi-symmetric and creep flow is assumed due to the high viscosity. Commercial software ANSYS is used to solve the coupled flow and energy equations. Moving contact points as well as free surface during the pressing are effectively calculated and updated by utilizing API functions of CAD software Unigraphics. The mesh distortion problem near the wall is overcome by automatic remeshing, and the temperatures of the new mesh are conveniently interpolated by using a unique function of ANSYS. The developed model is applied to the pressing process of TV glasses. In conclusion, the presented method shows that the pressing process accompanying moving boundary can be simulated by effectively combining general purpose software without resorting to special dedicated codes.

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding (핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구)

  • Park, Soon Sub;Ko, Myeong Jin;Kim, Geon Hee;Won, Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

Characteristics of Hot Embossing using DVD/Blu-ray Stamper (DVD/Blu-ray 스템퍼를 이용한 핫엠보싱 특성)

  • Kim B. H.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.305-310
    • /
    • 2004
  • The Hot Embossing Lithography(HEL) as a method for the fabrication of nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this study, we investigated the characteristics of hot embossing lithography as a nanoreplication technique. To grasp characteristics of nano patterning rheology by process parameters(embossing temperature, pressure and time), we have carried out various experiments by using the DVD(400nm pattern width) and Blu-ray nickel stamps(150nm pattern width). During the hot embossing process, we have observed the characteristics of the size effect. The quality of products made by hot embossing is affected by its cooling shrinkage. The demolding process at the glass transition temperature results in low quality because of the shrinkage of the polymer. Therefore, the quantification of the temperature condition is essential for the replication of high quality.

  • PDF

Study of Chip On Glass Bonding Method using Diode Laser (다이오드 레이저를 이용한 Chip On Glass 접합에 관한 연구)

  • Seo M.H.;Ryu K.H.;Nam G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.423-426
    • /
    • 2005
  • A new chip on glass(COG) technique by making use of a high power diode laser for LCD driver IC packaging of LCD has been developed. A laser joining technology of the connection of IC chip to glass panel has several advantages over conventional method such as hot plate joining: shorter process time, high reliability of joining, and better fur fine pitch joining. The reach time to cure temperature of ACF in laser joining is within 1 second. In this study, results show that the total process time of joining is reduced by halves than that of conventional method. The adhesion strength is mainly 100-250 N/cm. It is confirmed that the COG technology using high power diode laser joining can be applied to advanced LCDs with a fine pitch.

  • PDF

Thermal Analysis of Hot Roller in a Dry Film Laminator (건식 필름 적층 성형기에서 고온 롤러의 열해석)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.975-980
    • /
    • 2001
  • The thermal analysis of the hot roller in a dry film laminator is studied numerically by steady-state two-dimensional heat transfer. In the laminating process for PDP glass or PCB, the temperature distributions in a hot roller are presented considering the effects of the roller rotation speed and the inner and outer radii of the roller. The results show that the temperature distributions are strongly dependent on Peclet number. If Pe number becomes larger, the iso-thermal lines are more concentric about the rotating axis and the temperature difference on the hot roller surface decreases exponentially. It also shows that if the contact angle between the roller and the film becomes smaller the temperature difference becomes smaller. However, the changes of the rollers inner or outer radius have little effect on the temperature difference.

GaAs Thin Films Grown on Conducting Glass by Hot Wall Epitaxy for Solar Cell

  • Tu, Jielei;Chen, Tingjin;Zhang, Chenjing;Shi, Zhaoshun;Wu, Changshu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2002
  • GaAs polycrystalline thin films with good performance were prepared on conducting glass by hot wall epitaxy (HWE), which were used for solar cell. Electron probe micro-analyzer (EPMA) was applied for the composition, morphology of surface and cross-section of grown films, and X-ray diffraction (XRD) for their phase structure; Raman scattering spectum (RSS) and photoluminescence (PL) were used for evaluating their optical characteristics. The results show that, there is textured structure on the surface of grown GaAs polycrystalline films, which is greatly promised to be suitable for the candidate of solar cell with low cost and high efficiency. It is concluded that the source and substrate at temperature of 900 ~ 930 $\^{C}$ and 500 $\^{C}$ respectively would be beneficial for such films.

  • PDF