• 제목/요약/키워드: Hot Glass

검색결과 193건 처리시간 0.026초

미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구 (A study on the process optimization of injection molding for replicability enhancement of micro channel)

  • 고영배;김종선;유재원;민인기;김종덕;윤경환;황철진
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

Nano-precision Polishing of CVD SiC Using MCF (Magnetic Compound Fluid) Slurry

  • Wu, Yongbo;Wang, Youliang;Fujimoto, Masakazu;Nomura, Mitsuyoshi
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.547-554
    • /
    • 2014
  • CVD SiC is a perfect material used for molds/dies in hot press molding of glass lens. In its fabrication process, nano-precision polishing is essential finally. For this purpose, a novel polishing method using MCF (Magnetic Compound Fluid) slurry is proposed. In this method, MCF slurry is supplied into a given gap between the workpiece and a MCF slurry carrier, and constrained within the polishing zone by magnetic forces from permanent magnet. In this paper, after an experimental rig used to actually realize the proposed method has been constructed, the fundamental polishing characteristics of CVD SiC such as the effects of process parameters including MCF slurry composition on work-surface roughness were experimentally investigated. As a result, nano-precision surface finish of CVD SiC was successfully attained with MCF slurry and the optimum process parameters for obtaining the smoothest work-surface were determined.

$CuInSe_2$ 나노 입자 합성 및 이를 이용한 광흡수층 박막 제조 (Synthsis of $CuInSe_2$ nanoparticles and its application to the absorber layer for thin films solar cells)

  • 김균환;안세진;윤재호;곽지혜;조아라;김도진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.396-396
    • /
    • 2009
  • Chalcopyrite semiconductor $CuInSe_2$ nanoparticles were prepared using a low temperature colloidal route by reacting the starting materials (CuI, $InI_3$ and $Na_2Se$) in solvents. After synthesised $CuInSe_2$ nanoparticles precursors were mixed with organic binder for the viscosity of the precursor slurry to be suitable for the doctor blade method. The mixture of $CuInSe_2$ and binder was deposited onto molybdenum-coated sodalime glass substrates to form thin film. The precursor thin films were preheated on the hot plate to remove remaining solvents and binder material. After subsequent thermal processing of the thin film under a selenium ambient, $CuInSe_2$ absorber layer with grain size significantly lager than that of the nanoparticles was formed.

  • PDF

PEDOT:PSS의 성막방법에 따른 유기태양전지용 ITO 투명전극과 PEDOT:PSS의 계면반응 연구

  • 김효중;이주현;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.329-329
    • /
    • 2013
  • 본 연구에서는 PEDOT:PSS와 crystalline-ITO (c-ITO) 박막 계면에서의 화학적 반응을(박리 및 용해 특성)을 관찰하기위해 spin-coating 및 droplet dropping을 통하여 PEDOT:PSS 용액을 코팅하고 이후 화학적 거동에 따른 전기적, 광학적 및 구조적 특성 변화를 관찰하였다. 강산성을 띄는 PEDOT:PSS (Al 4083) 박막의 코팅 전, 0.4T sodalime glass 위에 열처리를 통하여 성막된 c-ITO 투명전극을 15분 동안 상압 오존 공정을 통하여 계면처리함으로써 다른 변수의 영향을 배제하였으며, 표면 처리 후 spin-coating 및 droplet dropping method를 통하여 PEDOT:PSS를 코팅하여 c-ITO와 PEDOT:PSS 계면사이의 화학적 반응의 영향을 시간 경과에 따라 분석하였다. PEDOT:PSS 코팅 후 솔밴트 제거를 위해 hot plate를 이용하여 $110^{\circ}C$로 열처리되었다. Spin-coating 방법과는 달리 droplet dropping 방법을 통해 형성된 c-ITO 투명전극/PEDOT:PSS 계면에서는 spin coating에서 적용된 동일한 공정변수적용에도 불구하고 PEDOT:PSS의 산성으로 인한 ITO 투명전극 표면에서의 화학적 조성변화가(In, Sn, O의 조성의 변화) 발생됨을 x-ray photoelectron spectroscopy 결과를 통해 확인하였다. 뿐만 아니라 계면 조성반응 변화에 따른 전기적 특성 및 광학적 투과율의 열화가 발생됨을 Hall measurement 측정과 UV/Vis spectrometer 결과를 통하여 도출하였다. 본 결과를 통해 c-ITO/PEDOT:PSS 사이에서 발생되는 내산특성/계면 화학변화가 유기태양전지에서의 산화물 투명전극과 유기물 계면 열화현상에 영향을 받을 수 있음을 나타낸다.

  • PDF

스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성 (Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method)

  • 김현주;이동윤;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.

SiC-$Si_3 N_4$ 세라믹공구를 위한 소결시간과 조성변화의 최적화 (Optimization of the Sintering Time and Composition for SiC-$Si_3 N_4$ Ceramic Tool)

  • 김경재;박준석;이성구;권원태;김영욱
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.78-84
    • /
    • 2001
  • In the present study, SiCSi-$Si_3 N_4$-SiC ceramic composites that contained up to 30 wt% of dispersed SiC particles were fabricat-ed cia hot-pressing with an oxynitride glass. The microstructure, the mechanical properties and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3 N_4$-20wf%SiC, the effect of sintering time on the microstructure, the mechanical properties and the cutting performance were also investigated. The longer sir-tering time is, the bigger the grain size of SiC is. The fracture toughness(-$K_k$) of the $Si_3 N_4$-SiC ceramic composites increased with the increase of gain size, while the flexural strengthh($\sigma$) decreased. For machining SCM440, the insert with 20wt%r SiC sintered for 8 hours showed the longest tool life while the insert with 20wt% SiC sintered for 12 hours showed the longest tool life for machining gray cast iron.

  • PDF

표면방사율에 따른 복사단열시스템의 열관류성능 평가 연구 (Evaluation of U-value for Radiant Barrier Systems in Relation to Surface Emissivity)

  • 김기세;이동규;윤종호;송인춘
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.39-50
    • /
    • 2000
  • Radiant barrier systems(RES) constructed with low emissivity materials bounded by an open air space can be used to reduce the net radiation transfer between two surfaces. To analyze the heat transfer characteristics of the radiant barrier systems which consist of a single-glass and radiation barriers, a simple theoretical model based on energy balances was suggested. And the model was validated by means of the experimental results. Using a guarded hot box, the temperatures of layers in selected RES and energy use for each cases were measured. The results show that the model well explained the heat transfer characteristics of those RES. Also, the heat transfer coefficient correlations considering natural and forced convection heat transfer ware suggested. It is found that the heat transfer efficiency of a RBS with aluminium surface improved up to 66.6% over that of a single glazing system.

  • PDF

소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가 (Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities)

  • 이재호;현인탁;이광호
    • 설비공학논문집
    • /
    • 제27권8호
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성 (The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load)

  • 공지현;지양근;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구 (Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle)

  • 정수진;정진우;하승찬
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.