• 제목/요약/키워드: Hot Compression

검색결과 235건 처리시간 0.022초

저농도 페놀수지 주입처리에 의한 평죽판 개발(1) (Development of Compressed-flattened Bamboo Impregnated with Low Molecular Weight PF Resin(1))

  • 이화형;김관의
    • 한국가구학회지
    • /
    • 제12권2호
    • /
    • pp.29-38
    • /
    • 2001
  • This study was carried out to develope a new process of flattening bamboo pieces(3 months old) by two steps of utilizing microwave oven and hot press. Internode bamboo pieces were impregnated with low molecular weight phenol formaldehyde resin (PF) under vacuum of 76 cmHg, heated in a household microwave oven in 1 minute, pressed on the temperature of $145^{\circ}C$ by the hot press for 10 minute, and then cooled by the cold press in their flattened form. The physical and mechanical . Properties of compressed flattened bamboo were as follows: 1) PF1(Mw:427) and PF2(Mw:246) sol. met the success of flattening of internode bamboo pieces in both of P. bambusoides and P. nigra var. PF2 showed the more plasticity to flatten the bamboo than PFI. The PF2 sol. with low molecular weight(Mw:246) gave the more weight gain than that of PF1 in the equal concentration. PF1 of 5% (NVC) and PF2 of 10% (NVC) sol. gave the best result for physical and mechanical properties and from a economical view point. 2) The PFI of 5% (NVC) sol. with low molecular weight decreased the water absorption of 62-63% and increased the bending strength (MaR) of 80-90%, compression strength of 43-54%. 3) The PF2 of 10% (NVC) sol. with low molecular weight decreased the water absorption of 56-57% and increased the bending strength (MaR) of 64-86%, compression strength of 39-63%.

  • PDF

염좌(捻挫)의 약물외치요법(藥物外治療法)에 관(關)한 문헌적(文獻的) 고찰(考察) (A literatual study on the external treatment of sprain and strain using the herb)

  • 양기영;김영일;홍권의;임윤경;이현
    • 혜화의학회지
    • /
    • 제14권1호
    • /
    • pp.83-94
    • /
    • 2005
  • 1. The external treatment of sprain and strain using the herb used adhesive(貼敷), using soaking in medicinal smoke to focuses and rinsing methods(熏洗), rubbing(擦擦) and hot compression(熱熨). 2. In the external treatment of sprain and strain using the herb, Adhesive(貼敷) is used most. Because Adhesive(貼敷) brings fast reactions, has less side effects, and can control the processing time. 3. The effects of herbs used in this external treatment are almost the same as oral herb-medicines such as, promoting blood flow to remove blood stasis(活血化瘀), relieving rheumatic conditions(祛風濕), and removing obstruction in meridians and collaterals(通經絡).

  • PDF

Uncertainty analysis of UAM TMI-1 benchmark by STREAM/RAST-K

  • Jaerim Jang;Yunki Jo;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1562-1573
    • /
    • 2024
  • This study rigorously examined uncertainty in the TMI-1 benchmark within the Uncertainty Analysis in Modeling (UAM) benchmark suite using the STREAM/RAST-K two-step method. It presents two pivotal advancements in computational techniques: (1) Development of an uncertainty quantification (UQ) module and a specialized library for the pin-based pointwise energy slowing-down method (PSM), and (2) Application of Principal Component Analysis (PCA) for UQ. To evaluate the new computational framework, we conducted verification tests using SCALE 6.2.2. Results demonstrated that STREAM's performance closely matched SCALE 6.2.2, with a negligible uncertainty discrepancy of ±0.0078% in TMI-1 pin cell calculations. To assess the reliability of the PSM covariance library, we performed verification tests, comparing calculations with Calvik's two-term rational approximation (EQ 2-term) covariance library. These calculations included both pin-based and fuel assembly (FA-wise) computations, encompassing hot zero-power and hot full-power operational conditions. The uncertainties calculated using both the EQ 2-term and PSM resonance treatments were consistent, showing a deviation within ±0.054%. Additionally, the data compression process yielded compression ratios of 88.210% and 92.926% for on-the-fly and data-saving approaches, respectively, in TMI fuel assembly calculations. In summary, this study provides a comprehensive explanation of the PCA process used for UQ calculations and offers valuable insights into the robustness and reliability of newly developed computational methods, supported by rigorous verification tests.

액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석 (Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy)

  • 이근식
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

태양열과 프레온 기체 압축열 복합온수기 개발 (The hot water production through the combination of solar thermal energy and freon gas compression heat)

  • 정현채;김기선;선경호;남승영;이종원
    • 태양에너지
    • /
    • 제10권2호
    • /
    • pp.18-27
    • /
    • 1990
  • 태양열과 프레온 R-12 기체 압축열 복합온수기를 개발하여 실용화할 수 있도록 했으며 개발 내용은 다음과 같다. 가. 라디에타형 집열기와 평판형 집열기를 고안하여 프레온 R-12 기체와 액체가 상변이를 하면서 순환하여 태양복사열과 간접복사열을 흡수하고 대기의 대류접촉전열을 통해 대기열을 효과적으로 흡수하도록 개발했다. 나. 저장조하부에 압축기를 위치하도록 하고 압축기 가동시 발생하는 압축기의 표면열과 압축기에서 발생된 기체열이 가장 효과적으로 저장조내에 주입되도록 압축기와 저장조내에 위치한 열교환기의 연결관을 축소화했다. 다. 저장조내에 압축된 기체로부터 열교환을 더욱 효과적으로 하기 위해 열교환기를 새로 고안하여 개발했다. 라. 2801, $50^{\circ}C$ 온수를 매일 생산하도록 하여도 혹한기에 월 6,000원 이하의 전기료가 소요됨을 실측했다. 마. 프레온 R-12 순환시스템으로 우리나라의 기후에서 태양열온수기 제작에 최대 장애요인인 동파문제를 완전제거 할 수 있었고 조작이 완전자동이며 하자 발생요인이 거의 없고 수명이 길며 제작단가가 낮아 보급에 큰 잇점이 있을 것임을 확인했다.

  • PDF

고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구 (A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process)

  • 전효원;서창희;오상균;권태하;강경필;육형섭
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

동적재료모델을 활용한 S355NL강의 열간 변형거동 분석 (Hot Deformation Behavior of S355NL Steel Based on Dynamic Material Model)

  • 이성호;박동준;송종한;이채훈;이진모;이태경
    • 소성∙가공
    • /
    • 제33권5호
    • /
    • pp.348-353
    • /
    • 2024
  • The S355NL steel has garnered attention as a structural material for applications in extremely challenging environments owing to its excellent mechanical properties. This study investigated the hot deformation behavior of S355NL steel through compression tests conducted in a temperature range of 900-1200℃ and a strain rate range of 10-3-1 s-1 to explore the optimal processing parameters. The flow behaviors consisted of an initial rapid increase and subsequent plateau with a marginal decrease in stress. This phenomenon was interpreted in terms of microstructural evolution, such as dislocation density and dynamic recrystallization. The efficiency of power dissipation and instability domains were derived using the dynamic material model based on the compression test dataset, providing a series of processing maps. In contrast to conventional processing maps plotted for a single strain value, this study has established ten maps at a strain interval of 0.1. This approach allowed for the consideration of continuously variable strain parameters, which is inherent to an actual metal-forming process. The efficiency of power dissipation was strongly governed by the high temperatures (≥ 1100℃). The strain rates barely affected the efficiency, but it primarily contributed to the instability domains. The application of high strain rates (≥ 10-1s-1) generated a region of negative instability due to the absence of dynamic recrystallization and the presence of cracks at grain boundaries.

AZ80 압출재를 이용한 고온단조 윤활특성 분석 (Study on the Lubrication Characteristics at the Elevated Temperature in Hot Forging Test with Extruded AZ80 Mg Alloy)

  • 윤종헌;이상익;전효원;이정환
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.108-113
    • /
    • 2013
  • This paper demonstrates the lubricant performance in T-shape hot forging of Mg alloys. This processes induces complex plastic material flow of the initial billet such as simultaneous compression and extrusion deformations. Five lubricants with different amounts of graphite are applied to the T-shape forging at temperatures of 300 and $350^{\circ}C$. As the amount of graphite in the lubricant increases, the extruded depth gradually increases, which improves hot forgeability for Mg alloys. However, the lubricant performance decreases as forging temperature increases from 300 to $350^{\circ}C$. As the punch stroke increases, forgeability is considerably influenced by the lubricant. Thus, the selection of lubricants in hot forging of Mg alloys is critical when plastic deformation is severe.

18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구 (A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2)

  • 김영득;조종래;이종욱;배원병
    • 소성∙가공
    • /
    • 제20권4호
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가 (Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk)

  • 차도진;김동권;김영득;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF