• Title/Summary/Keyword: Hot Chuck

Search Result 14, Processing Time 0.019 seconds

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Design and Implementation of Host-side Cache Migration Engine for High Performance Storage in A Virtualization Environment (가상화 환경에서 스토리지 성능 향상을 위한 호스트 캐시 마이그레이션 엔진 설계 및 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.6
    • /
    • pp.278-283
    • /
    • 2016
  • Due to explosive increase in the amount of data produced recently, cloud storage system is required to offer high and stable performance. However, VM (Virtual Machine) migration may result in lowered storage service performance. Especially, in an environment where the host-side flash cache is used in a cloud system, the existing warmed up cache is lost and the problematic cold start begins at a new cache due to a VM migration. In this paper, we first demonstrate and analyze the cold start problem and then propose Cachemior (Cache migrator) which enables efficient hot start of the flash cache.

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Auto-Bending Manufacturing System for Boiler Tubes (보일러 튜브 자동벤딩 생산시스템 개발)

  • Lee, Hyun-Soo;Kang, Moon-Hyun;Park, Jun-Kon;Hur, Kwan;Sung, Joon-Suk;Heo, Wang-Soon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.450-454
    • /
    • 1997
  • This system is the automatic boiler tube bending equipment which has four heads for bending the tube and the carriage for moving the tube. The system consists of two frames for transporting each moving parts, high-frequency heating equipment for heating the tube in hot bending, control panel for inputting the job data operating, remote control unit for concetration and distribution of input/output, and the monitoring system which can establish unmanned operationby receiving the bending job data via LAN form a design teamwhich produces the job data and schedule based on master production plan and diagnoses bending data change, input, whole system status, and system malfunctions. By employing this system, 30% of production improvement was achieved was achieved comparing to the existing bending system.

  • PDF