• Title/Summary/Keyword: Hot Carrier Stress

Search Result 74, Processing Time 0.028 seconds

The impact of Spacer on Short Channel Effect and device degradation in Tri-Gate MOSFET (Tri-Gate MOSFET에 SPACER가 단채널 및 열화특성에 미치는 영향)

  • Baek, Gun-Woo;Jung, Sung-In;Kim, Gi-Yeon;Lee, Jae-Hun;Park, Jong-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.749-752
    • /
    • 2014
  • The device performance of n-channel MuGFET with different fin width, existence of spacer and channel length has been characterized. Tri-Gate structure(fin number=10) has been used. There are four kinds of Tri-Gate with fin width=55nm with spacer, fin width=70nm with spacer, fin width=55nm without spacer, fin width=70nm without spacer. DIBL, subthreshold swing, Vt roll-off, (above Short Channel Effect)and hot carrier stress degradation have been measured. From the experiment results, short Channel Effect with spacer was decreased, hot carrier degradation with spacer and narrow fin width was decreased. Therefore, layout of LDD structure with spacer and narrow fin width is desirable in short channel effect and hot carrier degradation.

  • PDF

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

Hot-Carrier Degradation of NMOSFET (NMOSFET의 Hot-Carrier 열화현상)

  • Baek, Jong-Mu;Kim, Young-Choon;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3626-3631
    • /
    • 2009
  • This study has provided some of the first experimental results of NMOSFET hot-carrier degradation for the analog circuit application. After hot-carrier stress under the whole range of gate voltage, the degradation of NMOSFET characteristics is measured in saturation region. In addition to interface states, the evidences of hole and electron traps are found near drain depending on the biased gate voltage, which is believed to the cause for the variation of the transconductance($g_m$) and the output conductance($g_{ds}$). And it is found that hole trap is a dominant mechanism of device degradation in a low-gate voltage saturation region, The parameter degradation is sensitive to the channel length of devices. As the channel length is shortened, the influence of hole trap on the channel conductance is increased. Because the magnitude of $g_m$ and $g_{ds}$ are increased or decreased depending on analog operation conditions and analog device structures, careful transistor design including the level of the biased gate voltage and the channel length is therefore required for optimal voltage gain ($A_V=g_m/g_{ds}$) in analog circuit.

Hot electron induced degradation model of the DC and RF characteristics of RF-nMOSFET (Hot electron에 의한 RF-nMOSFET의 DC및 RF 특성 열화 모델)

  • 이병진;홍성희;유종근;전석희;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.62-69
    • /
    • 1998
  • The general degradation model has been applied to analyze the hot carrier induced degradation of the DC and RF characteristics of RF-nMOSFET. The degradation of cut-off frequency has been severer than the degradation of bulk MOSFET drain current. The value of the degradation rate n and the degradation parameter m for RF-nMOSFET has been equal to those for bulk MOSFET. The decrease of device degradation with the increase of fingers could be explained by the large source/drain parasitic resistance and drain saturation voltage. It has been also found that the RF performance degradation could be explained by the decrease of $g_{m}$ and $C_{gd}$ and the increase of $g_{ds}$ after stress. The degradation of the DC and RF characteristics of RF-nMOSFET could be predicted by the measurement of the substrate current.t.

  • PDF

Charge pumping method를 이용한 MOSFET소자의 Trap분포 연구

  • Kim, Sun-Gon;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.216.2-216.2
    • /
    • 2015
  • 본 연구에서는 charge pumping method에서 사용되는 변수들의 변화를 이용하여 hot carrier stress가 MOSFET소자의 oxide내에서의 trap 분포에 어떤 영향을 미치는지에 대해서 연구하였다. trap 분포를 확인하기 위해 스트레스 전 후에 reverse bias와 주파수에 따른 trap의 양을 측정 하였다. 스트레스 전과 후에 reverse bias와 주파수가 감소할수록 trap이 증가하는 모습이 나타났고, 스트레스 후에는 전과 비교하여 전반적으로 trap의 양이 증가하였다. 또한, 스트레스 전과 후에 MOSFET소자의 trap density는 center region에서 $2.89{\times}$10^10에서 $1.64{\times}$10^10으로 감소하였고, drain region에서 $2.83{\times}$10^10에서 $5.26{\times}$10^10으로 증가한 것을 확인하였다. 이는 reverse bias와 주파수의 가변에 따라서 trap의 공간적 분포를 측정할 수 있다는 것을 의미한다.

  • PDF

The Effects of Hydrogenation in n-channel Poly-si TFT with LDD Structure (LDD구조를 갖는 n-채널 다결정 실리론 TFT소자에서 수소처리의 영향)

  • 장원수;조상운;정연식;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1105-1108
    • /
    • 2003
  • In this paper, we have fabricated the hydrogenated n-channel polysilicon thin film transistor (TFT) with LDD structure and have analyzed the hot carrier degradation characteristics by electrical stress. We have compared the threshold voltage (Vth), sub-threshold slope (S), and trans-conductance (Gm) for devices with LDD (Lightly Doped Drain) structure and non-LDD at same active sizes. We have analyzed the hot carrier effects by the hydrogenation in devices. As a analyzed results, the threshold voltage, sub-threshold slope for n-channel poly-si TFT were increased, trans-conductance was decreased. The effects of hydrogenation in n-channel poly-si TFT with LDD structure were shown the lower variations of characteristics than devices of the non-LDD structure with nomal process.

  • PDF

Degradation of Gate Induced Drain Leakage(GIDL) Current of p-MOSFET along to Analysis Condition (분석 조건에 따른 p-MOSFET의 게이트에 유기된 드레인 누설전류의 열화)

  • 배지철;이용재
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • The gate induced drain leakage(GIDL) current under the stress of worse case in -MOSFET's with ultrathin gate oxides has been measured and characterized. The GIDL current was shown that P-MOSFET's of the thicker gate oxide is smaller than that of the thinner gate oxide. It was the results that the this cur-rent is decreased with the increamental stress time at the same devices.It is analyzed that the formation components of GIDL current are both energy band to band tunneling at high gate-drain voltage and energy band to defect tunneling at low drain-gate voltage. The degradations of GIDL current was analyzed the mechanism of major role in the hot carriers trapping in gate oxide by on-state stress.

  • PDF

Simulations of Proposed Shallow Trench Isolation using TCAD Tool (TCAD 툴을 이용한 제안된 얕은 트랜치 격리의 시뮬레이션)

  • Lee, YongJae
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, the proposed shallow trench isolation structures for high threshold voltage for very large scale and ultra high voltage integrated circuits MOSFET were simulated. Physically based models of hot-carrier stress and dielectric enhanced field of thermal damage have been incorporated into a TCAD tool with the aim of investigating the electrical degradation in integrated devices over an extended range of stress biases and ambient temperatures. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.

Constant Voltage Stress (CVS) and Hot Carrier Injection (HCI) Degradations of Vertical Double-date InGaAs TFETs for Bio Sensor Applications (바이오 센서 적용을 위한 수직형 이중게이트 InGaAs TFET의 게이트 열화 현상 분석)

  • Baek, Ji-Min;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.41-44
    • /
    • 2022
  • In this study, we have fabricated and characterized vertical double-gate (DG) InGaAs tunnel field-effect-transistors (TFETs) with Al2O3/HfO2 = 1/5 nm bi-layer gate dielectric by employing a top-down approach. The device exhibited excellent characteristics including a minimum subthreshold swing of 60 mV/decade, a maximum transconductance of 141 µS/㎛, and an on/off current ratio of over 103 at 20℃. Although the TFETs were fabricated using a dry etch-based top-down approach, the values of DIBL and hysteresis were as low as 40 mV/V and below 10 mV, respectively. By evaluating the effects of constant voltage and hot carrier injection stress on the vertical DG InGaAs TFET, we have identified the dominant charge trapping mechanism in TFETs.