• 제목/요약/키워드: Host reaction

검색결과 366건 처리시간 0.029초

(Zn1-xMgx)2SiO4:mn 형광체의 제조와 발광특성 (Preparation and Luminescent Properties of (Zn1-xMgx)2SiO4:mn Phosphors)

  • 이지영;유일
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.415-418
    • /
    • 2009
  • $Zn_{2}SiO_{4}$:Mn green phosphors doped with Mg for PDP were synthesized by solid state reaction method. $Zn_{2}SiO_{4}$:Mn, Mg phosphors with increasing Mg concentration were changed from Rhombohedral to Orthorhombic structure. Photoluminescence intensity of $Zn_{2}SiO_{4}$:Mn phosphors doped with Mg 0.5 mol was definitely higher than that of Mg non-doped sample. The enhanced luminescence with doping Mg in the $Zn_{2}SiO_{4}$:Mn phosphors was interpreted by the increase of energy transfer from host to Mn ions with substitution Mg for Zn in the $Zn_{2}SiO_{4}$:Mn host.

Bis(3,5-dibromophenyl)dimethylsilane: A useful synthon for organosilicon chemistry

  • Lee, Jong-Dae
    • 통합자연과학논문집
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 2022
  • The diarylsilyl compound, C14H12Br4Si, was prepared from the reaction of 3,5-dibromophenyllithium with dimethyldichlorosilane, (CH3)2SiCl2, at -78 ℃, can be a good synthon for derivatization to produce efficient host materials for organic light emitting diodes (OLEDs). Crystal structure analysis shows a slight deviation from ideal tetrahedral symmetry around the Si atom, whose conformation is effective in ensuring the maximum separation of the two phenyl rings and the two methyl substituents. The directions of the two aromatic rings are almost perpendicular to each other. The molecule exists as a monomer in the solid state.

연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성 (Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis)

  • 정충환;정수지
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석 (Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave)

  • 유홍정;정원근;전병희;김성현
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.325-329
    • /
    • 2011
  • 본 연구를 통해 최근 개발된 근자외선영역대에서 발광하는 이리듐 착물인 $Ir(pmb)_{3}$ (Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,$C,C^{2'}$ ))의 합성 과정상에서 기존의 합성법과 동일한 발광 특성을 가지면서 더 효율적인 합성 방법을 제안하였다. 합성 과정에서 초음파가 투입되면서 용매에 녹지 않는 반응물의 파쇄 및 혼합을 돕고, 촉매의 활성을 향상시켜 이온 및 라디컬을 형성시키는 방법으로 최대 42.5% 합성 수율을 얻어 내었으며 이는 기존 방법 대비 약 4배 이상 향상된 결과이다. 이러한 초음파 합성법으로 합성된 $Ir(pmb)_{3}$은 이성질체 별로 405 nm(면이성질체) 412 nm(자오선이성질체)의 발광 피크를 보였으며 이중 좀더 효율이 높은 자오선이성질체를 사용하여 전계 발광 소자를 제작하였다. 밴드갭이 큰 $Ir(pmb)_{3}$에 적합한 호스트 물질을 UGH2, CBP, mCP 세가지 선정하여 전계발광소자를 제작하였으며, 그 중 mCP를 호스트 물질로 사용한 소자의 경우가 호스트물질과 인광물질사이의 에너지전달이 가장 효율적으로 일어나 가장 높은 휘도와 효율을 보였다.

Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

  • Back, Chang-Gi;Lee, Seung-Yeol;Lee, Boo-Ja;Yea, Mi-Chi;Kim, Sang-Mok;Kang, In-Kyu;Cha, Jae-Soon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.212-218
    • /
    • 2015
  • In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of $1pg/{\mu}l$ per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

Reaction of Five Non-cereal Grasses to Five Races and Two Host Selective Toxins of Pyrenophora tritici-repentis

  • Ali, Shaukat;Langham, M.A.C.
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.245-251
    • /
    • 2015
  • Alternative hosts increase the difficulty of disease management in crops because these alternate hosts provide additional sources of primary inoculum or refuges for diversity in the pathogen gene pool. Agropyron cristatum (crested wheatgrass), Bromus inermis (smooth bromegrass), Pascopyrum smithii (western wheatgrass), Stipa viridula (green needlegrass), and Thinopyrum intermedium (intermediate wheatgrass), commonly identified in range, prairie, verge, and soil reclamation habitats, serve as additional hosts for Pyrenophora tritici-repentis, the cause of tan spot in wheat (Triticum aestivum L.). A. cristatum (five lines), B. inermis (seven lines), P. smithii (four lines), S. viridula (two lines), and T. intermedium (six lines) were tested for their reactions to 30 representative P. tritici-repentis isolates from races 1-5. Plants were grown until the two-three-leaf stage in a greenhouse, inoculated individually with the 30 isolates, held at high humidity for 24 h, and rated after 7 days. All lines developed lesion types 1-2 (resistant) based on a 1-5 rating scale. Also, leaves from an additional plant set were infiltrated with two host selective toxins, Ptr ToxA as a pure preparation and Ptr ToxB as a dilute crude culture filtrate. All lines were insensitive to the toxins. Results indicate that these grass hosts have a limited or nonsignificant role in tan spot epidemiology on wheat in the northern Great Plains. Additionally, the resistant reactions demonstrated by the grass species in this research indicate the presence of resistance genes that can be valuable to wheat breeding programs for improving wheat resistance to P. tritici-repentis.

한국산 연초 "바이러스"에 관한 연구 (Studies with the tobacco mosaic viruses)

  • 김은수;소인영
    • 미생물학회지
    • /
    • 제1권1호
    • /
    • pp.10-18
    • /
    • 1963
  • Studies with the Tobacco Mosaic Viruses; W. S Kim, and So, I Y., (Dept. of biology Sung Kyun Kwan Univer. Seoul, Korea.). Using the common strain of tobacco mosaic virus (TMV) which was sent from the Dept. of Plant Pathology, University of Wisconsin, U.S.A. as control virus, a possible new strain of tobacco mosaic virus (SMV) was isolated from tobacco leaves collected from Tobacco Experiment Station farms as well as from various blends of manufactured Korean cigaretts. SMV was isolated by single lesion isolation method and by inoculating the virus through various species of host plants. The two viruses, TMV and SMV were indentified by the difference in symptoms, host range, serological reaction, and electron micrograpy. As the results of the above experiment the author believes the virus isolate SMV is a different strain of TMV. The experimental evidences that SMV belongs to the TMV group are as follows; 1. Both viruses produced local necrotic lesions on Nicotiana glutimosa L. 2. Both showed a dilution end point of $10^8$. 3. Aphid transmission was failed with the viruses. 4. Both had an isoelectric point around pH 3.3. 5. Two viruses were serological reactive. 6. The size of the virus particles was around 270-300mu as they were observed under the electron microscope. The virus SMV, however, is different from the common strain of TMV and the experimental evidences are as follows; 1. SMV produced quite different symptoms from TMV on various host plants like tobacoo(Nicotiana tabacum L., White Burley), Nicotiana rustica L., Chenopodium Koreanse Nakai. Bata vulgaris L., and Datura tatula L., SMV produced distinct local lesions on these host plants whereas TMV incited largely mosaic diseases. 2. The serological titers obtained from the heterologous combinations were lower than those from homologous combinations of antigens and antiser.

  • PDF

Trichomonas vaginalis and trichomoniasis in the Republic of Korea

  • Ryu, Jae-Sook;Min, Duk-Young
    • Parasites, Hosts and Diseases
    • /
    • 제44권2호
    • /
    • pp.101-116
    • /
    • 2006
  • Vaginal trichomoniasis, caused by Trichomonas vaginalis, is the most common sexually transmitted disease. More than 170 million people worldwide are annually infected by this protozoan. In the Republic of Korea, 10.4% of women complaining of vaginal symptoms and signs were found to be infected with T. vagina/is. However, despite its high prevalence, the pathogenesis of T. vaginalis infection has not been clearly characterized although neutrophil infiltration is considered to be primarily responsible for the cytologic changes associated with this infection. We hypothesized that trichomonads in the vagina sometime after an acute infection secrete proteins like excretory-secretory product that have a chemotactic effect on neutrophils, and that these neutrophils are further stimulated by T. vaginalis to produce chemokines like IL-8 and $GRO-\alpha$, which further promote neutrophil recruitment and chemotaxis. Thus, neutrophil accumulation is believed to maintain or aggravate inflammation. However, enhanced neutrophil apoptosis induced by live T. vaginalis could contribute to resolution of inflammation. Macrophages may constitute an important component of host defense against T. vaginalis infection. For example, mouse macrophages alone and those activated by lymphokines or nitric oxide are known to be involved in the extracellular killing of T. vaginalis. In the host, T. vaginalis uses a capping phenomenon to cleave host immunoglobulins with proteinases and thus escape from host immune responses. Recently, we developed a highly sensitive and specific diagnostic polymerase chain reaction (PCR) technique using primers based on a repetitive sequence cloned from T. vaginalis (TV-E650), and found that the method enables the detection of T. vaginalis at concentrations as low as 1 cell per PCR mixture.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

인삼이 이식편대숙주반응, 대식세포유주저지반응 및 Trichinella spiralis의 expulsion에 미치는 영향 (Effect of Panax ginseng on the Graft-versus-Host Reaction, Production of Leucocyte Migration Inhibitory Factor and Expulsion of Adult Trichinella spiralis in Mice)

  • 하대유;이정호;김상형
    • 대한미생물학회지
    • /
    • 제21권1호
    • /
    • pp.133-144
    • /
    • 1986
  • This study was undertaken to assess the effect of ginseng administration on T lymphocyte induced local xenogenic graft-versus-host(GVM) reactions which were induced with thymocyte, spleen cell and lymph node cell of ICR mice. Mice received daily 10mg of 70% alcohol ginseng extract oral1y for 100days and control mice remained untreated for the same period of time. The cells from donor mice were injected intradermally into the closely shaven abdominal skin of Sprague-Dawley rats for GVH tests. The thymocyte from control(ginseng-untreated) mice showed a negative local GVH reaction, whereas thymocyte from experimental(ginseng-treated) mice showed a positive reaction with the rate of 17.4%. When spleen cells were injected, the incidence of positive local GVH reaction was 66.7% among ginseng-treated mice, as opposed to incidence of 45.5% of positive local GVH reaction among control mice. The incidence of positive local GVH reaction of the lymph node cells when injected into a recipient was 71.4% among ginseng-treated mice as compared with that of 18.9% among control mice. The relationship between spleen cell inoculum and intensity of the local GVH reaction was assessed in ginseng-untreated mice. The intensity of GVH reaction clearly appears to be dose related. In ginseng-treated mice, a minimum of $1{\times}10^7$ spleen cell was required for production of positive local GVH reaction with almost linear relationship up to an inoculum of $5{\times}10^8$ cells. In control mice, however, a minimum of $1{\times}10^8$ spleen cells was required for positive GVH reaction. These results strongly suggest that the ginseng administration augments significantly the local xenogenic GVH reaction which was used to assess T lymphocyte function and immunocompetence of mice and in addition to this, these results appear to support previous suggestions that the local GVH reaction consitutes a qualitative test of the functional activity of T lymphocytes. These results may be the first to induce local GVH reaction, employing rats as recipient and mice as donor. This study was also desingned to investigate some of the effects of ginseng extract on lymphocyte-macrophage interactions. This was accomplished by in vitro quantification of 1) migratory inhibitory factor(MIF) synthetic capacity of splenic lymphocytes in mice previously primed with ginseng 2) MIF responsiveness of mouse peritoneal macrophages or chicken peripheral leucocytes under the presence of ginseng extract 3) migration ability of chicken peripheral leucocytes by direct stimulation of ginseng extract or ginseng saponin and 4) immunosuppressive effects of immunosuppressants such as cyclophosphamide, cyclosporin A or dexamethasone. Mice divided equally into the ginseng and the saline groups, which received intraperitoneally daily 0.2ml of ginseng absolute alcohol-extract(5mg/ml) and same amount of saline for 15 days, respectively. The cellular immune responsiveness of these mice was assayed 15 days after ginseng pretreatment. Splenic lymphocytes of mice treated with ginseng, when stimulated with sensitized specific-antigen such as sheep red blood cells or toxoplasmin, or with polyclonal activator concanavalin A, produced significantly more MIF than those of control saline group. MIF responsiveness of normal mouse macrophages was significantly augmented when assayed under the presence of ginseng extract (1mg/ml). The migratory ability of normal chicken leucocytes in the absence of MIF was significantly decreased by the stimulation of ginseng extract alone. MIF response was significantly decreased by immunosuppressants and this impaired response was not restored by ginseng pretreatment. This study was additionally performed to evaluate the effect of ginseng on the expulsion of adult Trichinella spiralis in mice. ICR mice were infected experimentally by esophageal incubation of 300 T. spiralis infective muscle larvae prepared by acid-pepsin digestion of infected mice. and received oral administration of 70% alcohol ginseng extract(10mg/mouse/day) for the indicated days plus 4 days before infection. At various times after infection, the number of adult T. spiralis worms in small intestines was determined. Interestingly, ginseng-treatment was accompanied by accelerated expulson of T. spiralis. These results led to the conclusion that Panax ginseng caused some enhancing effect on GVH reaction, macrophage migration inhibition reaction and expulsion of T. spiralis. In addition these results suggested that the mechanisms responsible for this enhancement of ginseng may be chiefly or partially due to nonspecific stimulation of cell-mediated immune response.

  • PDF