• Title/Summary/Keyword: Host layer

Search Result 288, Processing Time 0.031 seconds

Intestinal Colonization Characteristics of Lactobacillus spp. Isolated from Chicken Cecum and Competitive Inhibition Against Salmonella typhimurium

  • Shin, Jang-Woo;Kang, Jong-Koo;Jang, Keum-Il;Kim, Kwang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.576-582
    • /
    • 2002
  • Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microflora. To select the best Lactobacillus spp. as a chicken probiotic, probiotic characteristics of 10 selected Lactobacillus strains isolated from chicken cecum or obtained from KCTC were investigated. The strains were examined for resistance to pH 2.0 and 0.3% oxgall, and adhesion to cecal mucus and cecal epithelial cells. All strains grew in MRS containing 0.3% oxgall. However, Lb. plantarum AYM-10, Lb. fermentum YL-3, AYM-3, and Lb. paracasei YL-6 showed relatively high resistance to 0.3% oxgall. Lb. fermentum YL-3, YM-5, AYM-3, and Lb. paracasei YL-6 survived 4 hours of incubation at pH 2.0. Lb. fermentum YL-3, KCTC 3112, and Lb. plantarum AYL-5 were strongly adhesive to cecal mucus, while the rest showed moderate or low adhesion. Lb. plantarum AYM-10, AYL-1, and AYL-5 had good adhering properties to cecal epithelial cells (30.7$\pm$10.82, 40.2$\pm$20.90, and 14.5$\pm$4.22, respectively). Lb. fermentum YL-3, AYM-3, and KCTC 3547 showed Intermediate adhesion ability, and Lb. plantarum showed better adhesion ability to cecal epithelial cells than Lb. fermentum. Attached Lb. fermentum YL-3 to cecum after 60 min incubation was confirmed using CLSM. Lb. fermentum YL-3 attached to a matrix which was composed of a mucus layer adjacent to intracrypts and pericryptal region. Some Lb. fermentum YL-3 bound to mucosal epithelial cells. From these results, Lb. fermentum YL-3 was selected as a chicken probiotic. In vivo trials of chicks inoculated with Lb. fermentum YL-3 had decreased Salmonella population in cecal contents and livers (p<0.5).

Performance Evaluation on SCTP multi-homing Feature (SCTP의 멀티호밍 특성에 대한 성능 평가)

  • Song, Jeong-Hwa;Lee, Mee-Jeong;Koh, Seok-Joo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.245-252
    • /
    • 2004
  • Stream Control Transmission Protocol(SCTP) is a new connection-oriented, reliable delivery transport protocol operating on top of an unreliable connectionless packet service such as IP. It inherits many of the functions developed for TCP, including flow control and packet loss recovery functions. In addition, it also supports transport layer multihoming and multistreaming In this paper, we study the impact of multi-homing on the performance of SCTP. We first compare performance of single-homed SCTP. multi-homed SCTP, TCP Reno and TCP SACK. We, then describe potential flaw in the current SCTP retransmission policy, when SCTP host is multihomed. Our Results show that SCTP performs better than TCP Reno and TCP SACK due to several changes from TCP in its congestion control mechanism. In particular. multi-homed SCTP shows the best result among the compared schemes. Through experimentation for multi-homed SCTP, we found that the current SCTP retransmission policy nay deteriorate the perfomance when the retransmission path it worse than the original path. Therefore, the condition of retransmission path is a very important factor In SCTP performance and a proper mechanism would be required to measure the condition of the retransmission path.

A Load-Sharing Scheme using SCTP Multi-homing (SCTP 멀티호밍 특성을 활용한 부하 분산 기법)

  • Song Jeonghwa;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.595-607
    • /
    • 2004
  • Networks often evolve to provide a host with multiple access points to the Internet. In this paper, we propose a transport layer load distribution mechanism utilizing the multiple network interfaces simultaneously. We specifically propose an extension of Stream Control Transmission Protoco1 (SCTP) to have load sharing over multiple network interfaces. We named the particular service provided by the Proposed load sharing mechanism to be LS (Load Sharing) mode service. LS mode service is based on the following four key elements: (i) the separation of flow control and congestion control, (ii) congestion window based striping, (iii) redundant packet retransmission for fast packet loss recovery, (iv) a novel mechanism to keep track of the receiver window size with the SACKS even if they arrive out-of-order. Through simulations, it is shown that the proposed LS mode service can aggregate the bandwidth of multiple paths almost ideally despite of the disparity in their bandwidth. When a path with a delay of 100% greater is utilized as the second path, the throughput is enhanced about 20%.

Improving TCP Performance through Pre-detection of Route Failure in Mobile Ad Hoc Networks (Ad Hoc 망에서 경로단절 사전감지를 통한 TCP 성능향상)

  • Lee Byoung-Yeul;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.900-910
    • /
    • 2004
  • Route failure is mainly caused by mobility of mobile host in ad hoc networks. Route failure, which may lead to sudden packet losses and delays, is losing the route from source to destination. In this situation, TCP assumes that congestion has occurred within the network and also initiates the congestion control procedures. Congestion control algorithm provides the means for the source to deal with lost packets. TCP performance in ad hoc environments will be degraded as TCP source cannot distinguish congestion from route failure. In this paper, we propose TCP-P as pre-detection approach to deal with route failure. TCP-P freezes TCP through pre-detection of route failure. Route failure information of the proposed mechanism is obtained not by routing protocol but by MAC protocol. The intermediated node, obtaining route failure information by its MAC layer, relays the information to TCP source and lets TCP source stop the congestion control algorithm. Results reveal that TCP-P responding with proactive manner outperforms other approaches in terms of communication throughput under the presence of node mobility.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Luminescence Characteristics of Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용 Ba2+ Co-Doped Sr2SiO4:Eu 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.169-172
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;{(Sr,Ba)}_2SiO_4$ yellow phosphor and investigated the development of blue LEDs by combining the phosphor with a InGaN blue LED chip (${\lambda}_{em}$=405 nm). The InGaN-based ${(Sr,Ba)}_2SiO_{4}:Eu$ LED lamp shows two bands at 405 nm and 550 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the ${(Sr,Ba)}_2SiO_{4}:Eu$ phosphor. The 550 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the ${(Sr,Ba)}_2SiO_4$ host matrix. In the preparation of UV Yellow LED Lamp with ${(Sr,Ba)}_2SiO_{4}:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the epoxy-to-yellow phosphor ratio of 1:0.45. At this ratio, the CIE chromaticity was x=0.4097 and y=0.5488.

Modeling and Analysis of High Speed Serial Links (SerDes) for Hybrid Memory Cube Systems (하이브리드 메모리 큐브 (HMC) 시스템의 고속 직렬 링크 (SerDes)를 위한 모델링 및 성능 분석)

  • Jeon, Dong-Ik;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.193-204
    • /
    • 2017
  • Various 3D-stacked DRAMs have been proposed to overcome the memory wall problem. Hybrid Memory Cube (HMC) is a true 3D-stacked DRAM with stacked DRAM layers on top of a logic layer. The logic die is mainly used to implement a memory controller for HMC, and it is connected through a high speed serial link called SerDes with a host that is either a processor or another HMC. In HMC, the serial link is crucial for both performance and power consumption. Therefore, it is important that the link is configured properly so that the required performance should be satisfied while the power consumption is minimized. In this paper, we propose a HMC system model included the high speed serial link to estimate performance accurately. Since the link modeling strictly follows the link flow control mechanism defined in the HMC spec, the actual HMC performance can be estimated accurately with respect to each link configuration. Various simulations are conducted in order to deduce the correlation between the HMC performance and the link configuration with regard to memory utilization. It is confirmed that there is a strong correlation between the achievable maximum performance of HMC and the link configuration in terms of both bandwidth and latency. Therefore, it is possible to find the best link configuration when the required HMC performance is known in advance, and finding the best configuration will lead to significant power saving while the performance requirement is satisfied.

Luminescent Characteristics of $Mg_xZn_{1-x}SiN_2$ Based Phosphors for Thin Film Electroluminescent Device Applications ($Mg_xZn_{1-x}SiN_2$를 모체로 한 박막 전계발광소자용 형광체의 발광특성)

  • 이순석;임성규
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.27-37
    • /
    • 1997
  • Photoluminescent and cathodoluminescent charcteristics of inorganic luminescent materials were investigated ot develop possible phosphors for thin film electroluminescent (TFEL) device applications. Mg, Zn, and Photoluminescent and cathodoluminescent charcteristics of inorganic luminescent materials were investigated ot develop possible phosphors for thin film electroluminescent (TFEL) device applications. Mg, Zn, and $Si_3N_4$ powders were used to synthesize $(Mg_xZn_{1-x})SiN_2$ host materials. $Tb_4O_7$ and $Eu_2O_3$ powdrs were added as luminescent centers. Very sharp emission spectra of $Tb^{3+}$ ions were observed from $Mg._5Zn._5SiN_2:Tb$ sampels sintered at $1400^{\circ}C$ for an hour and the maximum intensity of emission spectra occured at wavelength of 550nm (green light). Synthetic conditions of $(Mg_xZn_{1-x})SiN_2:Eu$ phosphors were optimized for the hghest luminescence. The Eu concentrations were varied from 0.2% to 1.6%. Before firing, the powders were mixed using ballmills, methanol, acetone, or D.I. water. The Mg/Zn ratio also were varied from x=0.3 to x=0.7. The maximum PL intensity was obtained from a sample with 1.2% Eu concentration and the powder was mixed with methanol and dried before firing. The maximum intensity of the emission spectra occurred t the wavelength of 470nm(blue light). TFEL devices fabricated by using sputter deposition of $(Mg._3Zn._7)SiN_2:Eu$ phosphor layer showed yellowish white emission at the phosphor field of 2MV/cm.

  • PDF

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Strategy for Solving Future Energy and Global Warming Using Icy materials (얼음 물질을 이용한 미래 에너지와 지구 온난화 처리 방안)

  • Shin, Kyu-Chul;Lee, Huen
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Gas hydrates are known to form by physical interactions between host water and guest gas molecules and thus can be treated as a special type of icy materials. The gas hydrates are recently highlighted because of their use to future energy source even though they were discovered naturally in the deep-sea marine sediments a long time ago. However, the present and future urgent task is to develop the efficient and safe production technology for recovering methane from gas hydrates. Here, we propose one of potential recovery processes using swapping phenomenon occurring between gaseous carbon dioxide and methane hydrate deposits. Such a swapping process provide several technological and economical advantages over conventional processes. The carbon dioxide can be directly sequestered into methane hydrate layer and simultaneously methane can be produced with a high recovery rate more than 90%. In addition, the icy powders can be effectively used as a new medium for storing hydrogen. To increase hydrogen storage capacity the icy hydrate networks need to be redesigned to create the more empty cages in which hydrogen gas can be enclathrated. Functionalized icy materials might be used in a variety of energy and environmental fields.