• Title/Summary/Keyword: Host genome

Search Result 245, Processing Time 0.025 seconds

Topological implications of DNA tumor viral episomes

  • Eui Tae, Kim;Kyoung-Dong, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.587-594
    • /
    • 2022
  • A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools.

Ongoing endeavors to detect mobilization of transposable elements

  • Lee, Yujeong;Ha, Una;Moon, Sungjin
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.305-315
    • /
    • 2022
  • Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.

Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

  • Back, Chang-Gi;Lee, Seung-Yeol;Lee, Boo-Ja;Yea, Mi-Chi;Kim, Sang-Mok;Kang, In-Kyu;Cha, Jae-Soon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of $1pg/{\mu}l$ per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

Retroviral integration profiles: their determinants and implications for gene therapy

  • Lim, Kwang-Il
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • Retroviruses have often been used for gene therapy because of their capacity for the long-term expression of transgenes via stable integration into the host genome. However, retroviral integration can also result in the transformation of normal cells into cancer cells, as demonstrated by the incidence of leukemia in a recent retroviral gene therapy trial in Europe. This unfortunate outcome has led to the rapid initiation of studies examining various biological and pathological aspects of retroviral integration. This review summarizes recent findings from these studies, including the global integration patterns of various types of retroviruses, viral and cellular determinants of integration, implications of integration for gene therapy and retrovirus-mediated infectious diseases, and strategies to shift integration to safe host genomic loci. A more comprehensive and mechanistic understanding of retroviral integration processes will eventually make it possible to generate safer retroviral vector platforms in the near future.

Whole Genome Enabled Phylogenetic and Secretome Analyses of Two Venturia nashicola Isolates

  • Prokchorchik, Maxim;Won, Kyungho;Lee, Yoonyoung;Segonzac, Cecile;Sohn, Kee Hoon
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.98-105
    • /
    • 2020
  • Venturia nashicola is a fungal pathogen causing scab disease in Asian pears. It is particularly important in the Northeast Asia region where Asian pears are intensively grown. Venturia nashicola causes disease in Asian pear but not in European pear. Due to the highly restricted host range of Venturia nashicola, it is hypothesized that the small secreted proteins deployed by the pathogen are responsible for the host determination. Here we report the whole genome based phylogenetic analysis and predicted secretomes for V. nashicola isolates. We believe that our data will provide a valuable information for further validation and functional characterization of host determinants in V. nashicola.

Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

  • Hasan, Tarik;Choi, Chul Hee;Oh, Man Hwan
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.2-6
    • /
    • 2015
  • Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.

Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features

  • Mallick, Tista;Mishra, Rukmini;Mohanty, Sasmita;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.

Complete genome sequence of Pediococcus acidilactici CACC 537 isolated from canine

  • Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Youn Kyoung Son;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1105-1109
    • /
    • 2023
  • Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

Genomic Approaches for Understanding the Characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium ST1120, Isolated from Swine Feces in Korea

  • Kim, Seongok;Kim, Eunsuk;Park, Soyeon;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1983-1993
    • /
    • 2017
  • Salmonella enterica subsp. enterica serovar Typhimurium, one of the most common foodborne pathogens, is transmitted mainly through contaminated food derived from infected animals. In this study, S. Typhimurium ST1120, an isolate from pig feces in Korea, was subjected to whole-genome analysis to understand its genomic features associated with virulence. The genome of ST1120 was found to have a circular chromosome of 4,855,001 bp (GC content 52.2%) and a plasmid of 6,863 bp (GC content 46.0%). This chromosome was predicted to have 4,558 open reading frames (ORFs), 17 pseudogenes, 22 rRNA genes, and 86 tRNA genes. Its plasmid was predicted to have three ORFs. Comparative genome analysis revealed that ST1120 was phylogenetically close to S. Typhimurium U288, a critical isolate in piggery farms and food chains in Europe. In silico functional analysis predicted that the ST1120 genome harbored multiple genes associated with virulence and stress resistance, including Salmonella pathogenicity islands (SPIs containing SPI-1 to SPI-5, SPI-13, and SPI-14), C63PI locus, ST104 prophage locus, and various antibiotic resistance genes. In accordance with these analysis results, ST1120 showed competence in invasion and survival abilities when it was added to host cells. It also exhibited robust resistance against antibiotics in comparison with other S. Typhimurium strains. This is the first report of the complete genome sequence of S. Typhimurium isolated from swine in Korea. Comparative genome analysis between ST1120 and other Salmonella strains would provide fruitful information toward understanding Salmonella host specificity and developing control measures against S. Typhimurium infection.

A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus

  • Barandoc, Karen P.;Park, Jay-Young;Kim, Yong-Gyun
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.279-283
    • /
    • 2010
  • Polydnavirus genome is segmented and dispersed on host wasp chromosome. After replication, the segments form double- stranded circular DNAs and embedded in viral coat proteins. These viral particles are delivered into a parasitized host along with parasitoid eggs. A serine-rich protein (SRP) is predicted in a polydnavirus, Cotesia plutellae bracovirus (CpBV), genome in its segment no. 33 (CpBV-S33), creating CpBV-SRP1. This study explored its expression and physiological function in the diamondback moth, Plutella xylostella, larvae parasitized by C. plutellae. CpBV-SRP1 encodes 122 amino acids with 26 serines and several predicted phosphorylation sites. It is persistently expressed in all tested tissues of parasitized P. xylostella including hemocyte, fat body, and gut. Its physiological function was analyzed by injecting CpBV-S33 and inducing its expression in nonparasitized P. xylostella by a technique called SERI (segment expression and RNA interference). The expression of CpBV-SRP1 significantly impaired the spreading behavior and total cell count of hemocytes of treated larvae. Subsequent RNA interference of CpBV-SRP1 rescued the immunosuppressive response. This study reports the persistent expression of CpBV-SRP1 in a parasitized host and its parasitic role in suppressing the host immune response by altering hemocyte behavior and survival.