• Title/Summary/Keyword: Host University

Search Result 4,638, Processing Time 0.041 seconds

Characteristics and Pathogenicity of Host Range Expanded Recombinant Viruses in Insect Cells (숙주범위가 넓어진 재조합 바이러스의 세포주에서의 특성 및 병원성)

  • Kim, Hye-Sung;Woo, Soo-Dong;Kim, Woo-Jin;Choi, Jae-Young;Jin, Byung-Rae;Lee, Youn-Hyung;Kang, Seok-Kwon
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.29-37
    • /
    • 1997
  • To use recombinant viruses with wider host range as viral insecticides, we investigated the characteristics and pathogenicity of host range expanded recombinant viruses in insect cells. We compared host range expanded recombinant viruses, RecS-B6 and RecB-8, constructed by cotransfection of Autographa californica nuclear polyhedrosis virus (AcNPV) and Bombyx mori NPV (BmNPV), to host range expanded AcNPV, Ac-BH, by substitution of the 0.6 Kb fragment of the BmNPV helicase gene. Restriction endonuclease profiles of RecS-B6 and RecB-8 DNAs were different from those of parent viruses. Nucleotide sequence analysis of the 0.6 Kb region in the putative helicase gene of RecS-B6 and RecB-8 showed that their structures were identical to the counterpart region of BmNPV. Comparison of viral replication of these recombinant viruses in Sf-21 and BmN-4 cells showed that Ac-BH, compared to wild type viruses, replicated well in BmN-4 cells but poorly in Sf-21 cells. In contrast, RecS-B6 and RecB-8 replicated relatively well in both cells compared to parent viruses. These results may imply that random genomic recombinant viruses, RecS-B6 and RecB-8, possess better potential as viral pesticides than helicase-mediated recombinant virus, Ac-BH.

  • PDF

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Effective Combination of Agrobacterium tumefaciens Strains and Ti Plasmids for the Construction of Plant Vector System

  • Kim, Mi-Suk;Park, Jeong-Du;Eum, Jin-Seong;Sim, Woong-Seop
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.179-184
    • /
    • 1996
  • The purpose of this study is to obtain the most efficient combination of Agrobacterium tumefaciens strains and Ti plasmids for the construction of dicotyledonous plant vector system. Ti plasmid-curing A. tumefaciens A136 and KU12C3 were transformed with four kinds of Ti plasmids, pTiBo542, pTiA6, pTiKU12 and pTiAch5, respectively. The stems of 28 species of dicotyledonous plants were then inoculated with these transformants and examined for crown gall formation. The different combination of A. tumefaciens strains and Ti plasmids showed quite a difference in terms of the crown gall formation. Agrobacterium strins A136 and KU12C3 have a same plant host range in case that both strains harour the same kind of Ti plasmid, pTiBo542 or pTiAch5. However, the above-mentioned both strains have quite different host range in the event of containing the same Ti plasmid, pTiKU12 or pTiA6. In case that KU12C3 contains pTiA6 or pTiKU12, this strain has a wider plant host range than A136. The plant host range of pTiBo542 is the widest, followed by pTiA6, pTiKU12 and pTiAch5. Twelve plants among 28 tested plants are not transformed by any virulent Agrobacterium strains used in this study. In conclusion, A. tumefaciens KU12C3 and A136 harboring pTiBo542 showed the widest host range for transforming dicotyledonous plants. Also, it was acertained that the host range of Ti plasmids is affected by chromosomal level.

  • PDF

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Microbial Subversion of Heparan Sulfate Proteoglycans

  • Chen, Ye;Gotte, Martin;Liu, Jian;Park, Pyong Woo
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.415-426
    • /
    • 2008
  • The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.

A New Approch for Catalyst Optimization: Host/Guest Complexes of Chiral Bisphosphine Bearing Imidazolidinone and Their Application in Rh-Catalyzed Asymmetric Hydrogenation

  • Park, Jung-Hwan;Shin, Hyun-Ik;Park, Doo-Han;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.635-638
    • /
    • 2010
  • As a new strategy for the optimization of a chiral catalyst, the catalytic activity of the host-guest complexes of chiral bisphosphine bearing imidazolidinone was investigated in Rh-catalyzed asymmetric hydrogenation of enamide. Marginal enhancement in enantioselectivity was observed and the nature of interaction between host-guest was experimentally elucidated.

Current Technologies and Related Issues for Mushroom Transformation

  • Kim, Sinil;Ha, Byeong-Suk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.

Biomphalaria glabrata (Pulmonata: Planorbidae): A Potential Second Molluscan Intermediate Host of A Human Intestinal Fluke, Echinostoma cinetorchis (Trematoda: Echinostomatidae)

  • Chung, Pyung-Rim;Younghun Jung;Joo, Chong-Yoon
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.57-61
    • /
    • 2001
  • The present study examines the potential involvement of Biomphalaria glabrata, a known molluscan intermediate host of Schistosoma mansoni, in the life cycle of Echinostoma cinetorchis, one of the echinostomes that are ubiquitous parasites of vertebrates and are of importance in human and veterinary medicine and wildlife diseases. Echinostomes can be maintained easily and inexpensively in the laboratory and provide good models for biological research ranging from the molecular to the organismal. In the present study, no echinostome cercariae were released from the B. glabrata experimentally infected with E. cinetorchis miracidia, whereas all the Biomphalaria snails infected with E. cinetorchis cercariae were found to be infected with the metacercariae. This is the first report that B. glabrata can experimentally serve as the second intermediate host of E. cinetorchis, and that it might be employed as one of the target molluscs for establishing a biological research model with E. cinetorchis in the laboratory.

  • PDF

Zn(II)porphyrin Helical Arrays: A Strategy to Overcome Conformational Heterogeneity by Host-Guest Chemistry

  • Yoon, Zin-Seok;Easwaramoorthi, Shanmugam;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.197-201
    • /
    • 2008
  • Conformational heterogeneity of directly linked multiporphyrin arrays with larger molecular length retards their utilities in practical applications such as two-photon absorption and molecular photonic wire. In this regard, here we adopted a way to overcome the conformational heterogeneity through hydrogen bonding by selective binding of meso aryl substituents of porphyrins (host) with urea (guest) to form helical structure. Using steady-state and time-resolved spectroscopy, we observed the enhanced fluorescence quantum yield by ~1.8 to 2.4 times, enhanced anisotropy values and the disappearance of fast fluorescence decay component in the host-guest helical forms. In addition, the enhanced nonlinear optical responses of helical arrays infer the extended inter-porphyrin electronic coupling due to a significant change in dihedral angle between the neighboring porphyrin moieties. The current host-guest strategy will provide a guideline to improve the structural homogeneity of the photonic wire.

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF