Objectives: To develop a model that predicts a death probability of acute myocardial infarction(AMI) patient, and to evaluate a performance of hospital services using the developed model. Methods: Medical records of 861 AMI patients in 7 general hospitals during 1996 and 1997 were reviewed by two trained nurses. Variables studied were risk factors which were measured in terms of severity measures. A risk model was developed by using the logistic regression, and its performance was evaluated using cross-validation and bootstrap techniques. The statistical prediction capability of the model was assessed by using c-statistic, $R^2$ as well as Hosmer-Lemeshow statistic. The model performance was also evaluated using severity-adjusted mortalities of hospitals. Results: Variables included in the model building are age, sex, ejection fraction, systolic BP, congestive heart failure at admission, cardiac arrest, EKG ischemia, arrhythmia, left anterior descending artery occlusion, verbal response within 48 hours after admission, acute neurological change within 48 hours after admission, and 3 interaction terms. The c statistics and $R^2$ were 0.887 and 0.2676. The Hosmer-Lemeshow statistic was 6.3355 (p-value=0.6067). Among 7 hospitals evaluated by the model, two hospitals showed significantly higher mortality rates, while other two hospitals had significantly lower mortality rates, than the average mortality rate of all hospitals. The remaining hospitals did not show any significant difference. Conclusion: The comparison of the qualities of hospital service using risk-adjusted mortality rates indicated significant difference among them. We therefore conclude that risk-adjusted mortality rate of AMI patients can be used as an indicator for evaluating hospital performance in Korea.
The purpose of this study was to compare the risk-adjusted in-hospital mortality for craniotomies between logistic regression and multilevel analysis. By using patient sample data from the Health Insurance Review & Assessment Service, in-patients with a craniotomy were selected as the survey target. The sample data were collected from a total number of 2,335 patients from 90 hospitals. The sample data were analyzed with SAS 9.3. From the results of the existing logistic regression analysis and multilevel analysis, the values from the multilevel analysis represented a better model than that of logistic regression. The intra-class correlation (ICC) was 18.0%. It was found that risk-adjusted in-hospital mortality for craniotomies may vary in every hospital. The agreement by kappa coefficient between the two methods was good for the risk-adjusted in-hospital mortality for craniotomies, but the factors influencing the outcome for that were different.
Jang, Won Mo;Park, Jae-Hyun;Park, Jong-Hyock;Oh, Jae Hwan;Kim, Yoon
Journal of Preventive Medicine and Public Health
/
v.46
no.2
/
pp.74-81
/
2013
Objectives: The objective of this study was to evaluate the performance of risk-adjusted mortality models for colorectal cancer surgery. Methods: We investigated patients (n=652) who had undergone colorectal cancer surgery (colectomy, colectomy of the rectum and sigmoid colon, total colectomy, total proctectomy) at five teaching hospitals during 2008. Mortality was defined as 30-day or in-hospital surgical mortality. Risk-adjusted mortality models were constructed using claims data (basic model) with the addition of TNM staging (TNM model), physiological data (physiological model), surgical data (surgical model), or all clinical data (composite model). Multiple logistic regression analysis was performed to develop the risk-adjustment models. To compare the performance of the models, both c-statistics using Hanley-McNeil pair-wise testing and the ratio of the observed to the expected mortality within quartiles of mortality risk were evaluated to assess the abilities of discrimination and calibration. Results: The physiological model (c=0.92), surgical model (c=0.92), and composite model (c=0.93) displayed a similar improvement in discrimination, whereas the TNM model (c=0.87) displayed little improvement over the basic model (c=0.86). The discriminatory power of the models did not differ by the Hanley-McNeil test (p>0.05). Within each quartile of mortality, the composite and surgical models displayed an expected mortality ratio close to 1. Conclusions: The addition of clinical data to claims data efficiently enhances the performance of the risk-adjusted postoperative mortality models in colorectal cancer surgery. We recommended that the performance of models should be evaluated through both discrimination and calibration.
Park, Hyeung-Keun;Kwon, Young-Dae;Shin, You-Cheol;Lee, Jin-Seok;Kim, Hae-Joon;Sohn, Moon-Jun;Ahn, Hyeong-Sik
Journal of Preventive Medicine and Public Health
/
v.34
no.1
/
pp.21-27
/
2001
Objectives : To develop a model that will predict the mortality of patients undergoing Coronary Artery Bypass Graft (CABG) and evaluate the perfermance of hospitals. Methods : Data from 564 CABGs peformed in six general hospitals were collected through medical record abstraction by registered nurses. Variables studied involved risk factors determined by severity measures. Risk modeling was performed through logistic repression and validated with cross-validation. The statistical performance of the developed model was evaluated using c-statistic, $R^2$, and Hosmer-Lemeshow statistic. Hospital performance was assessed by severity-adjusted mortalities. Results : The developed model included age, sex, BUN, EKG rhythm, Congestive Heart Failure at admission. acute mental change within 24 hours, and previous angina pectoris history. The c-statistic and $R^2$ were 0.791 and 0.001, respectively. Hosmer-Lemeshow statistic was 10.3(p value=0.2415). One hospital had a significantly higher mortality rate than the average mortality rate, while others were net significantly different. Conclusion : Comparing the quality of service by severity adjusted mortality rates, there were significant differences in hospital performance. The severity adjusted mortality rate of CABG surgery may He an indicator for evaluating hospital performance in Korea.
The purpose of this study was to analyze whether nonemergency, isolated coronary artery bypass graft (CABG) surgery for high- or low-risk patients biases the assessment of the risk-adjusted mortality rates of hospitals. This study used 2002 National Health Insurance claims data for tertiary hospitals in Korea. The study sample consisted of 1,959 patients from 23 tertiary hospitals. The risk-adjustment model used the patients' biological, admission, and comorbidity data identified in the claims. The subjects were classified into high- and low-risk groups based on predicted surgical risk. The crude mortality rates and risk-adjusted mortality rates for low-risk, high-risk, and all patients in a hospital were compared based on the rank and the four intervals defined by quartile. Also, the crude mortality rates of the three groups were compared with their 95% confidence intervals of predicted mortality rates. The C-statistic (0.83) and Hosmer-Lemeshow test ($X^2$=11.47, p=0.18) indicated that the risk-adjustment model performed well. Presenting crude mortality rates with their 95% confidence intervals of predicted rates showed higher agreements among the three groups than using the rank or intervals of mortality rates defined by quartile in the hospital performance assessment. The crude mortality rates for the low-risk patients in 21 of the 23 hospitals were located on the same side of their 95% confidence intervals compared to that for all patients. High-risk patients and all patients differed at only one hospital. In conclusion, the impact of risk selection by hospital on the assessment results was the smallest when comparing the crude inpatient mortality rates of CABG patients with the 95% confidence intervals of predicted mortality rates. Given the increasing importance of quality improvements in Korean health policy, it will be necessary to use the appropriate method of releasing the hospital performance data to the public to minimize any unwanted impact such as risk-based hospital selection.
The purpose of this study was to develop the risk-adjusted mortality model using Korean Hospital Discharge Injury data and US National Hospital Discharge Survey data and to suggest some ways to manage hospital mortality rates through comparison of Korea and United States Hospital Standardized Mortality Ratios(HSMR). This study used data mining techniques, decision tree and logistic regression, for developing Korea and United States risk-adjustment model of in-hospital mortality. By comparing Hospital Standardized Mortality Ratio(HSMR) with standardized variables, analysis shows the concrete differences between the two countries. While Korean Hospital Standardized Mortality Ratio(HSMR) is increasing every year(101.0 in 2006, 101.3 in 2007, 103.3 in 2008), HSMR appeared to be reduced in the United States(102.3 in 2006, 100.7 in 2007, 95.9 in 2008). Korean Hospital Standardized Mortality Ratios(HSMR) by hospital beds were higher than that of the United States. A two-aspect approach to management of hospital mortality rates is suggested; national and hospital levels. The government is to release Hospital Standardized Mortality Ratio(HSMR) of large hospitals and to offer consulting on effective hospital mortality management to small and medium hospitals.
Objectives: To propose a risk-adjustment model with using insurance claims data and to analyze whether or not the outcomes of non-emergent and isolated coronary artery bypass graft surgery (CABG) differed between the low- and high-volume hospitals for the patients who are at different levels of surgical risk. Methods: This is a cross-sectional study that used the 2002 data of the national health insurance claims. The study data set included the patient level data as well as all the ICD-10 diagnosis and procedure codes that were recorded in the claims. The patient's biological, admission and comorbidity information were used in the risk-adjustment model. The risk factors were adjusted with the logistic regression model. The subjects were classified into five groups based on the predicted surgical risk: minimal (<0.5%), low (0.5% to 2%), moderate (2% to 5%), high (5% to 20%), and severe (=20%). The differences between the low- and high-volume hospitals were assessed in each of the five risk groups. Results: The final risk-adjustment model consisted of ten risk factors and these factors were found to have statistically significant effects on patient mortality. The C-statistic (0.83) and Hosmer-Lemeshow test ($x^2=6.92$, p=0.55) showed that the model's performance was good. A total of 30 low-volume hospitals (971 patients) and 4 high-volume hospitals (1,087 patients) were identified. Significant differences for the in-hospital mortality were found between the low- and high-volume hospitals for the high (21.6% vs. 7.2%, p=0.00) and severe (44.4% vs. 11.8%, p=0.00) risk patient groups. Conclusions: Good model performance showed that insurance claims data can be used for comparing hospital mortality after adjusting for the patients' risk. Negative correlation was existed between surgery volume and in-hospital mortality. However, only patients in high and severe risk groups had such a relationship.
Objectives: To evaluate the performance of models to predict AMI patients death using severity adjustment measures in Korea. Methods: Medical records of 861 patients treated by AMI in 7 general hospitals during 1996 and 1997 were reviewed by trained nurses. We measured the severity of patients by APACHE III, MedisGroups, CSI and DS. Using each severity method a predictive mortality for each patient was calculated from a logistic regression model including the severity score. The statistical performance of each severity method model was evaluated by using c-statistics and R2. For each hospital, z scores compared actual and expected mortality rates. Results: The overall in-hospital mortality was 14.5%, ranged from 10.0% to 22.2%. The distributions of severity scores for each method was significantly different by hospitals. The four severity-adjusted models to predict AMI patients death varied in their statistical performance for discrimination power of patients death. Order of Severity-adjusted mortality rates and z scores by four severity measures was different. Conclusion: Severity-adjusted mortality rates of AMI patients might be applied as an indicator for hospital performance evaluation in Korea. Because different severity methods frequently produce different impressions about relative hospital performance, more studies has to be done to use it as quality indicator and more attention should be paid to select appropriate severity measures.
Objectives : To assess whether the risk-adjusted in-hospital mortality rates for non-emergent and isolated coronary artery bypass graft surgery (CABG) patients exhibited a consistent trend from 2001 to 2003. Methods : The data used in this study came from CABG claims that were submitted to a Korean Health Insurance Review Agency (HIRA) in 2001, 2002, and 2003. Study datasets included data from 17 tertiary hospitals, which had at least 25 claims each year over 3 years. The inter-hospital differences in patients' risk-factors were identified and controlled in the risk-adjustment model. Actual and predicted mortality rates for each hospital were calculated in 2001, 2002, 2003, and 2001+2002, and were then examined to identify consistent rate patterns over time. Kappa analysis was applied to assess the agreements between rates. Results : Hospitals with lower-than-expected inpatient mortality rates showed more consistent rates than those with higher-than-expected mortality rates. The mortality rates that were calculated based on data obtained over multiple years had less variation among hospitals than rates based on single year data. Based on the Kappa score, the highest agreement was found when the rates were compared between the 2-year combined data (2001+2002) and 2003. Conclusions : Consistent patterns over 3 years were most evident for hospitals which had lower-than expected mortality rates. Policy makers can use this information to identify the degree of outcomes in hospitals and help motivate or channel the behaviors of providers.
Objective : Health insurers and policy makers are increasingly examining the hospital mortality rate as an indicator of hospital quality and performance. To be meaningful, a risk-adjustment of the death rates must be implemented. This study reviewed 5 severity measurement methods and applied them to the same data set to determine whether judgments regarding the severity-adjusted hospital mortality rates were sensitive to the specific severity measure. Methods : The medical records of 584 patients who underwent coronary artery bypass graft surgery in 6 general hospitals during 1996 and 1997 were reviewed by trained nurses. The MedisGroups, Disease Staging, Computerized Severity Index, APACHE III and KDRG were used to quantify severity of the patients. The predictive probability of death was calculated for each patient in the sample from a multivariate logistic regression model including the severity score, age and sex to evaluate the hospitals' performance, the ratio of the observed number of deaths to the expected number for each hospital was calculated. Results : The overall in-hospital mortality rate was 7.0%, ranging from 2.7% to 15.7% depending on the particular hospital. After the severity adjustment, the mortality rates for each hospital showed little difference according to the severity measure. The 5 severity measurement methods varied in their statistical performance. All had a higher c statistic and $R^2$ than the model containing only age and sex. There was a little difference in the relative hospital performance evaluation by the severity measure. Conclusion : These results suggest that judgments regarding a hospital's performance based on severity adjusted mortality can be sensitive to the severity measurement method. Although the 5 severity measures regarding hospital performance concurred, more often than would be expected by chance, the assessment of an individual hospital mortality rates varied by the different severity measurement method used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.