• Title/Summary/Keyword: Hose Nipple

Search Result 9, Processing Time 0.025 seconds

The Effect of the Nipple Protrusions on the Deformation Characteristics of the High-Pressure Hose in the Manufacturing Process (호스 제작시 니플 돌기부가 변형 특성에 미치는 영향)

  • Kim, Hynug-Je;Kim, Byung-Tak
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.51-56
    • /
    • 2002
  • In this paper, the stress and deformation characteristics of the high pressure hose that have the hose components such as rubber, braid and steel( sleeve and nipple) during the manufacturing process, and analyzed using the [mite element method The swaging process is modeled with a contact problem in identical conditions of real circumstances, and the properties of hose materials based on the experimental data are used in this analysis. Also, to understand the effect of the nipple protrusions on the deformation characteristics of a power steering hose among the steel materials shape of the existing model, and changed the steel materials shape partially, and compared with the existing model.

  • PDF

A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose (항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.

Finite Element Analysis of Swaging Process for Power Steering Hose (자동차용 파워스티어링 호스의 스웨이징 공정 유한요소해석)

  • Roh, Gi-Tae;Jeon, Do-Hyung;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.747-754
    • /
    • 2004
  • The nonlinear finite element analysis for deformation characteristics of a power steering hose during the swaging process is performed in order to investigate the stress and the strain levels of the hose components. Power steering hose consists of components such as rubber hose, nylon, nipple and sleeve. Moreover, the numerical analysis requires the consideration of material, geometry and boundary nonlinearities. To evaluate the rubber hose strength, the measured stresses and strains are compared with tension and compression test data. Contact force is also a principal factor to examine whether rubber hose is break away from sleeve and nipple or not.

A Study on the Optimal Crimping Diameter of Aircraft Fuel Hoses in Manufacturing Process (항공기용 연료호스 제작시 최적 크림핑 직경에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • The high pressure hoses are widely used for the vehicles, aircraft, and overall industries. The hose assembly is generally composed of a nipple, a socket and a hose with reinforcement layers to increase the tensile strength. To produce the hose assembly, crimping or swaging process is usually used to clamp its components to ensure the prevention of fluid leakage. Crimping is a cold-working technique to form a strong bond between the workpiece and a non-metallic component. The crimping stroke is a primary parameter to be determined in the metalworking process, and it plays an important role in hose performance. This study aims at investigating the optimal crimping stroke according to the size of aircraft high pressure hose by using MSC/MARC. It is supposed that the results can be useful to get the information about the crimping stroke in manufacturing process, even with the different size of a hose.

Finite Element Analysis for the Deformation Characteristics of a P/S Hose in the Swaging Process (Swaging 시 P/S 호스의 변형 특성에 대한 유한요소해석)

  • Kim, Byung-Tak;Kim, Hyung-Je;Song, Han-Jong;Kang, Chang-Gee
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.692-697
    • /
    • 2001
  • It is necessary to analyze the mechanical behaviors of the power steering hose, which must play a proper role under severe operating conditions, in order to prepare a preventive measure fur contrary effects expected in unfavorable circumstances. In this paper, the stress and deformation characteristics of the hose components such as rubber, sleeve, nipple and reinforced braids during the swaging process, are analyzed using the finite element method. Contact conditions identical to the manufacturing process are taken into account, and the material properties based on experimental data are used in the analysis. Investigations into the mutual relations between the manufacturing conditions and the hose performances are done with respect to the jaw stroke on the basis of the stress and strain values of the hose components after swaging process.

  • PDF

A Study on the Estimation of Separation Forces of a Power Steering Hose Assembly (동력조향장치 호스 조립품의 이탈력 추정에 관한 연구)

  • Kim Hyungje;Kim Byungtak;Yoon Moonchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.190-196
    • /
    • 2005
  • The power steering hose assembly is usually manufactured through the swaging process, which is conducted to connect a hose with metal fittings. In this process the hose is inserted into metal components, the sleeve and the nipple, and compressed in the radial direction by the jaws to clamp the hose with metal components. In case that the clamping force is small, the oil in the hose can leak locally under the severe operating conditions. To confirm the clamping force requirements, the measurement of separation force in longitudinal direction of the hose is usually performed. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the separation fDrce. The results interpretations are ffcused on the inner rubber component, and also a formula is proposed to estimate the separation farces with respect to friction coefficients.

Application of Acoustic Emission Technique and Friction Welding for Excavator Hose Nipple (굴삭기용 호스 니플의 마찰용접과 음향방출기법의 적용)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.436-442
    • /
    • 2013
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.

Optimization of Friction Welding Conditions for Production of Hose Nipple for Marine Transport (해양 수송용 호스니플 제작을 위한 마찰용접 조건의 최적화)

  • Kim, Dong-Gyu;Kim, Yeuk-Ran;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this study, for the tube-to-tube friction welding of hose nipple materials, the main parameters of friction welding were investigated using tensile tests, Vickers hardness surveys of the bond area (HAZ), and observations of the microstructure to increase the quality of friction welding based on visual examination. As-welded and post weld heat treated (PWHT) specimens were tested. The optimal welding conditions were found to be n = 1000 rpm, HP = 10 MPa, UP = 15 MPa, HT = 9 s, and UT = 5 s when the metal loss (Mo) was 7.5 mm. Furthermore, the peak of the hardness distribution of the friction welded joints could be eliminated by PWHT. Moreover, the two materials of the friction weld were thoroughly mixed with a well-combined structure of micro-particles, without any molten material, particle growth, or defects.

Analysis of Forging Plastic Stress by X.R.D and F.E.M (단조공정별 소성응력분포의 X.R.D 분석에 관한 연구)

  • Jeon, S.K.;Kim, S.Y.;Kim, J.H.;Lee, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.395-398
    • /
    • 2006
  • Forging is applied for many industrial fields. Also, it is applied to hose nipple. Stress and metal analysis is finding method of forging possibility and we predict this possibility by finite element forging analysis. But there are also many manufacturing procedure after forging, and metal texture is varied by additional heat treatment or coating. So this research is focused on the measuring and analysis of plastic residual stress distribution at overall manufacturing procedure. From raw material to final product we measured real residual stress at each manufacturing procedure by X ray diffract meter, and simulated another procedure except forging by nonlinear finite element analysis. Also we showed how Zn-Ni coating is more contributable to metal strength than Zn coating. By this research we make final conclusion that process analysis must be observed from raw material to final manufacturing state for robust design.

  • PDF