• Title/Summary/Keyword: Horticultural

Search Result 5,265, Processing Time 0.029 seconds

Effects of Light Intensity, Light Quality and Photoperiod for Growth of Perilla in a Closed-type Plant Factory System (완전제어형 식물공장에서 광량과 광질, 광주기가 들깨의 생장에 미치는 영향)

  • Sul, Seonggwan;Baek, Youngtaek;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.180-187
    • /
    • 2022
  • In order to select suitable light in a plant factory, electric energy use efficiency and light use efficiency should be considered simultaneously to consider operating costs as well as quantitative and functional aspects. The growth characteristics, electric energy use efficiency, light use efficiency by light intensity, LED ratio, and photoperiod conditions were compared together. Light intensity is 60, 130, 230, and 320 µmol·m-2·s-1 treatments, and light quality is the mixing ratio of red light and blue light 8:2, 6:4, 4:6, and 2:8 treatments. Photoperiod is 9, 12, 15, and 18 hours treatments based on the daytime. In the light intensity experiment, the growth rate increased as the light intensity increased, but there was no significant difference in the light use efficiency. When comparing the leaf fresh weight per power consumption, only the 320 µmol·m-2·s-1 treatment group showed significantly low efficiency, and there was no significant difference in the other treatments, so 230 µmol·m-2·s-1, which produced the most, was the most efficient. In the light quality experiment, the ratio of red light and blue light was measured to be high at the same time as the growth rate and light use efficiency in RB 8:2, and there was no significant difference in color difference and flavonoids content, so a Red:Blue ratio of 8:2 was the most suitable condition. In the photoperiod experiment, the longer the photoperiod, the higher the growth rate. However, there was no significant difference in the growth rate over 12 hours of daytime, so 12 hours considering the light consumption efficiency was a suitable condition. Based on the above results, LED light environmental conditions for perilla growth in plant factories were light intensity, light quality, and day length of 230 µmol·m-2·s-1 or more, 8:2, and 12 hours or more, respectively.

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season (대목 종류에 따른 저온기 토경재배에서의 토마토 생육 특성 분석)

  • Lee, Hyewon;Lee, Jun Gu;Cho, Myeong Cheoul;Hwang, Indeok;Hong, Kue Hyon;Kwon, Deok Ho;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.194-203
    • /
    • 2022
  • Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.

Growth, Yield, and Leaf-macronutrient Content of Grafted Cherry Tomatoes as Influenced by Rootstocks in Semi-forcing Hydroponics (반촉성 수경재배시 대목에 따른 방울토마토 접목묘의 생육, 수량 및 엽 내 양분 함량)

  • Hyewon Lee;Hyo Bong Jeong;Jun Gu Lee;Indeok Hwang;Deok Ho Kwon;Yul Kyun Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • There are many different types of cultivation in tomatoes for year-round production. One of them, semi-forcing cultivation is characterized by growing seedlings in winter season. If grafted seedlings are used in winter season that energy cost can be reduced, because they have tolerance to cold stress. This study was conducted to analyze the rootstock performance by measuring the growth, yield, and leaf-macronutrient content of cherry tomatoes grown in semi-forcing hydroponics. Three domestic rootstocks 'HSF4', '21LM', '21A701', and a control cultivar 'B-blocking' were grafted onto jujube-shaped cherry tomato (Lycopersicon esculentum L.) commercial cultivar 'Nonari'. The total yield per plant with grafted cherry tomato '21A701' was 3,387g, which was 11%, 22% and 24% higher than the yield with 'B-blocking', non-grafted one and 'HSF4'. The stem diameter of '21A701' was thick with 8.26mm, whereas non-grafted one was thin with 7.23mm at 160 days after transplanting. The flowering position of '21LM' was 34% and 47% higher than the flowering position of 'B-blocking' and non-grafted one at 153 days after transplanting. The NO3-N concentration in petiole sap of '21LM' was the highest with 1,746mg·L-1 and non-grafted one and 'HSF4' were the lowest with 1,252mg·L-1 and 1,245mg·L-1 at 167 days after transplanting. The results indicated that rootstock/scion combinations in cherry tomatoes can affect the plant growth, yield, and the concentration of different NO3-N in leaves at the late growth stage. Both '21A701' and '21LM' have vigorous root system, which influence the growth and yield increased.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Development of Cropping System Involving a Two-Year Rotation of Three Upland Crops using Paddy Soil in the Middle Plain Area (중부지역 평야지 논 이용 밭작물 2년 3모작 작부모형 개발)

  • Kang-Bo Shim;Hyun-Min Cho;Myeon-Na Shin;Areum Han;Mi-Jin Chae;Jeong-Ju Kim;Seuk-Ki Lee;Weon-Tai Jeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.199-210
    • /
    • 2022
  • This study aimed to develop a cropping system to use limited crop-land with optimum efficiency, while considering management from farmers. To establish the cropping system involving a two-year rotation of three crops, three types of cropping system were evaluated in Suwon (Seogcheon series) and Anseong (Geumcheon series) in the middle plain area using six crops from 2018 to 2019: maize-perilla-onion, potato-sesame-garlic, and maize-sesame-onion. The crop productivity and income of the cropping systems involving food-, oilseed-, and horticultural crops were analyzed, and the optimal cropping system was reviewed. The total yield of each crop was as follows: maize 1,281 kg, potato 4,837 kg, perilla 125 kg, sesame 120 kg, onion 6,503 kg, and garlic 1,027 kg per 10a. However, in terms of gross profit, the potato was more than 3.8 times more profitable than corn, sesame was 1.8 times more profitable than perilla, and garlic was more than 2.8 times more profitable than onions. As a result, in terms of net income, the potato-sesame-garlic cropping system produced the highest income per unit area. Sesame seedlings were planted after the potato harvest, thereby solving the problem of competition between the first and last crops. Overall, this study confirmed that the potato-sesame-garlic cropping system, a two-year rotation of three crops, contributed to the improvement of upland crop productivity and farmers' income and was an overall effective cropping system.

A Wide Region of Tropical Asia Adaptable Japonica Rice 'Asemi' (아시아 광지역 적응성 자포니카 벼 '아세미')

  • Jeong, Eung-Gi;kang, Kyeong-Ho;Hong, Ha-Cheol;Cho, Young-Chan;Jung, O-Young;Jeon, Yong-Hee;Chang, Jae-Ki;Lee, Jeom-Ho;Won, Yong-Jae;Yang, Un-Ho;Jung, Kuk-Hyun;Yeo, Un-Sang;Kim, Bo-Kyeong
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.1
    • /
    • pp.76-81
    • /
    • 2019
  • 'Asemi' is a rice variety derived from a cross between 'Jinmibyeo' which has translucent milled rice and medium maturity and 'Cheolwon46', an elite line with high yield and early maturity by the rice breeding team at NICS, RDA in 2013. The heading date of 'Asemi' is August 1, six days earlier than the check variety 'Hwaseong'. It has 82 cm culm length and 109 spikelets per panicle. 'Asemi' is resistant to blast disease, stripe virus and tungro virus, but susceptible to other viruses and planthoppers. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and short grain shape. It has protein content (6.7%) higher than 'Hwaseong', and amylose content (19.5%) similar to 'Hwaseong'. The milled rice recovery rate of 'Asemi' is similar to that of 'Hwaseong'. However, the head rice rate of 'Asemi' is higher than that of 'Hwaseong'. Milled rice yield of 'Asemi' is 5.23 MT/ha in ordinary cultivation. ' Asemi' could be adaptable to the wide region of tropical Asia (Registration No. 5639).

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Effects of Temperature on the Development and Reproduction of Phaedon brassicae Baly (Coleoptera: Chrysomelidae) (좁은가슴잎벌레의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon Ahn;Kwang Ho Kim;Hong Hyun Park;Gwan Seok Lee;Jeong Hwan Kim;In-Hong Jeong
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • The brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae), is one of the important pests infesting cruciferous vegetables. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of P. brassicae at four constant temperatures of 15, 20, 25 and 27.5℃ for immature life stage and five constant different temperatures of 10, 15, 20, 25 and 27.5℃ for adult stage. Eggs and larvae successfully developed next life stage at temperature tested. The development period of egg, larva, and pupa decreased as temperature increased. Lower developmental threshold (LDT) and thermal constant (K) were calculated using linear regression as 8.7℃ and 344.73DD, respectively. Lower and higher threshold temperature (TL and TH) from egg to adult emergence were estimated by Briere function as 5.3℃ and 40.4℃, respectively. Adults produced eggs at the temperature range between 10℃ and 27.5℃, and showed an estimated maximum number, ca. 627.5 eggs at 21.7℃. Adult oviposition models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed. Temperature-dependent development models and adult oviposition models would be useful components to understand the population dynamics of P. brassicae and to establish the strategy of integrated pest management in cruciferous crops.

Nutritional and functional constituents and antioxidant activity in whole onion (Allium cepa L.) by growth stage (생육시기별 양파 전초의 영양 및 기능성 성분과 항산화 활성 비교)

  • Sun-Kyung Lee;You-Seok Lee;Soo-Hyun Ji;Pyo-Hyeon Kim;Ju-Hyun Kim;Seong-Jun Kim;Kyung-Cheol Ma;Jin-Woo Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.833-846
    • /
    • 2023
  • Onions are essential vegetables for Koreans' diet and have various physiological activities. However, problems arise every year due to the imbalance between production and demand. Therefore, in this study, nutritional and functional components, and antioxidant activity were analyzed for each growth period in order to utilize onions at the disposal period. Whole onions harvested before June showed higher values of general ingredients, inorganic ingredients, organic acids, spiraeoside, quercetin, total chlorophyll, and antioxidant activity than bulbs harvested in June. On the other hand, the free sugar content was higher in the bulb of the harvest season in June than in whole onions. The total thiosulfinate content was similar to that of whole onions and bulbs in the early stages of growth. In addition, as a result of comparing the flavonoid compound and antioxidant activity of each onion variety, whole onions harvested at 25 weeks were higher in content than onion bulbs harvested in June. In conclusion, onions before the harvest season in June had excellent utilization value as food. Harvesting before 21 weeks is desirable for growing onions with excellent nutritional value, while harvesting after 23 weeks is recommended for excellent functional components and antioxidant activity in onions.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.