• Title/Summary/Keyword: Horticultural

Search Result 5,308, Processing Time 0.033 seconds

The Effect of protein and lipioperoxide on White Ginseng(WG) and Fermenta Ginseng(FG) Extracts on the liver in Mice that was irradiated by radiation (방사선이 조사된 생쥐 간에서 백삼과 발효인삼추출물이 단백질 및 지질과산화에 미치는 효과)

  • Ko, In-Ho;Chang, Chae-Chul;Koh, Jeong-Sam
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.43-50
    • /
    • 2004
  • The effects of ginseng extracts on liver damage induced by high energy x-ray were studied. To one group of ICR male mice were given white(50 mg/kg/day for 7 days, orally) and fermenta ginseng extracts(500 mg/kg/day for 7 days, orally)before irrdiation. To another group were irradiated by 5 Gy dose of high energy x-ray. Contrast group were given with saline(0.1 ml). This study also investigated the effect between MDA, protein content and ginseng extracts on hepatic damage. This study measured the level of MDA(malondialdehyde), protein content in liver tissue. Administrating orally white (50 mg/kg/day for 7 days, orally)and fermenta ginseng extracts(500 mg/kg/day), the level of MDA were generally decreased and the inhibition was increased. And the protein contents were identical with control group. After irradiation, the protein contents were increased and MDA(malondialdehyde) was increased. Therefore, ginseng extracts increased antioxidative enzyme activity. And We know that the antioxidatant effect of extracts from white and fermenta ginseng protect radiation damage by direct antioxidant effect involving SOD, CAT, GPX. It was included that ginsengs can protect against the lipid peroxidation in radiation damage through its antioxidatant properties.

  • PDF

Soil-blending Effect of Eggshell Powder on the Control of Club root Disease and the Growth of Chinese Cabbage in the Field (배추 무사마귀병 발병 억제 및 생육증진을 위한 달걀껍질 토양혼화처리 효과)

  • Gao, Yuliang;Kim, Byeong-Kwan;Lim, Tae-Heon;Li, Kui-Hua;Paek, Kee-Yoeup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Before transplanting Chinese cabbage seedlings, two kinds of eggshell powder were blended into the soil of cabbage field where the club root pathogen, Plasmodiophora brassicae, was infested. The incidence of clubroot disease, the shoot and root growth of cabbages, and soil pH were examined four times at 10 to 13 days interval from transplanting Chinese cabbage. As results, the cabbages treated with eggshell powder without membrane showed the fastest growth in above ground part, and the lowest disease index for clubroot disease. The cabbages treated with eggshell powder with membrane showed better growth than the cabbages of non-treated check, but lower growth than those treated with eggshell powder without membrane. Soil pH started to increase from 3 weeks after soil blending of eggshell powder, and it reached to above 8.0. However, the soil pH of non-treated check stayed at around 6.8. In the experiment to compare the effect of eggshell powder with other calcium compounds, soil-blending of $CaCO_3$ resulted the lowest disease incidence of 1.7 and the registered fungicide, 'flusulfamide', and the resistant variety 'CR Green cabbage' followed with the incidence of 1.9. Cabbages of non-treated check scored the highest disease incidence, 3.4, and that of eggshell powder without membrane was as high as 2.7. However, the growth of Chinese cabbage showed the different pattern to the disease incidence. Chinese cabbages treated with eggshell without membrane recorded the highest average growth, around 2.1 kg. On the other hand, the average growth of CR Green Chinese cabbage was about 2.0 kg, that of flusulfamide-treatment plot was 1.7, and that of non-treated check was as low as 1.3 kg. Soil blending of eggshell powder without membrane did not inhibit the development of clubroot, but increased the growth of cabbage to a great extent. Therefore, it was confirmed that soil blending of eggshell powder before transplanting makes the Chinese cabbage culture possible even in the field infested with club root pathogen.

Improvement of Arbuscular Mycorrhizal Fungi(AMF) Propagule at the Preplanting Field for Ginseng Cultivation (인삼 재배 예정지의 Arbuscular 균근균(AMF) 번식체 밀도 향상)

  • Sohn, Bo-Kyoon;Jin, Seo-Young;Kim, Hong-Lim;Cho, Ju-Sik;Lee, Do-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • This study was carried out to improve density of arbuscular mycorrhizal fungi (AMF) propagule and physiochemical properties of soil by planting crops at the preplanning field for ginseng cultivation. Winter crops, such as barley and rye and summer crops, such as sudangrass and soybean were cultivated in combination to improve AMF propagation and soil aggregation at the fields. Yield of harvested crops by plating with winter or/and summer crops was $3,045kg\;10a^{-1}$ of the only rye cultivation, $2,757kg\;10a^{-1}$ of sudangrass cultivation in combination with rye growing (rye/sudangrass) and $1,628kg\;10a^{-1}$ of soybean cultivation in combination with barley growing (barley/soybean), respectively. Soil aggregation rate was improved by cultivation with barley (45.7%) and with rye/sudangrass (45.1%), respectively. The density of AMF spores in soil was increased slowly by cultivating with winter crops. In summer crops cultivation system, density of AMF spores at sudangrass cultivated field was $64.0spores\;g^{-1}$ dried soil and it was higher than that at soybean cultivated field. External hyphae length (EHL) was $1.5{\sim}2.0m\;g^{-1}$ air-dried soil at winter crops cultivated field. However, in summer crops cultivation systems, EHL was $2.6{\sim}2.9m\;g^{-1}$ airdried soil at sudangrass cultivated field and was $1.7{\sim}2.2m\;g^{-1}$ air-dried soil at soybean cultivated filed, showing these were higher than those in non-cultivated field (control). Glomalin content of soil cultivated with crops was higher than that of control soil. Especially, the highest glomalin content was shown to $1.7m\;g^{-1}$ air-dried soil in the barley/soybean cultivation systems. These results suggested that the most effective soil management to improve AMF propagule density and soil physical properties by planting crops system was cultivating sudangrass followed by barley at the preplanning fields for ginseng cultivation.

Characterization of Weed Occurrence in Major Horticultural Crops - III. Phenological Aspects of Major Weeds (원예경작지(園藝耕作地)에서의 잡초발생(雜草發生) 특성에 관(關)한 연구(硏究) - III. 주요잡초종(主要雜草種)의 발생계절성(發生季節性))

  • Woo, I.S.;Pyon, J.Y.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.130-140
    • /
    • 1989
  • 1) Dormancy brocken weed seeds were planted in soil at 15 days interval from June to December in 1986 and 1987 and test of normality and normal distribution curve were made to determine seasonal distribution characteristics of weed emergence in fields. Monthly emergence distribution pattern of each species can be concluded as following normal distribution equations. E. crusgalli $y={\frac{1}{2.52{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.057)^2}{12.7}}}$ E. indica $y={\frac{1}{2.17{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.16)^2}{9.45}}}$ A. lividus $y={\frac{1}{7.74{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.06)^2}{15.46}}}$ S. nigrum $y={\frac{1}{2.7{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.695)^2}{14.58}}}$ C. busrsa-pastoris $y={\frac{1}{2.83{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.02)^2}{16.02}}}$ D. sanguinalis $y={\frac{1}{2.8{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.58)^2}{15.67}}}$ S. viridis $y={\frac{1}{2.72{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.36)^2}{14.8}}}$ C. album $y={\frac{1}{2.596{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.07)^2}{13.48}}}$ P. oleraeda $y={\frac{1}{2.45{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.83)^2}{12.01}}}$ 2) Emergence peak period of weed species tested were from the end of May to early August and yearly variation of emergence was observed in E. crus-galli, S. viridis, S, nigrum, and P. oleracea and this fact may more related to rainfall pattern rather than temperature.

  • PDF

Analysis of growth environment of Flammulina velutipes using the smart farm cultivation technology (병재배 팽이버섯의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Kwan-Woo;Jeon, Jong-Ock;Lee, Kyoung-Jun;Kim, Young-Ho;Lee, Chan-Jung;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2019
  • In this study, smart farm technology was used by farmers cultivating 'CHIKUMASSHU T-011' in order to develop an optimal growth model for the precision cultivation of bottle-grown winter mushroom and the results of the same are mentioned herein. Farmers participating in the experiment used 60 ㎡ of bed area with 4 rows and 13 columns of shelf shape, 20 horsepower refrigerator, 100T of sandwich panel for insulation, 6 ultrasonic humidifiers, 12 kW of heating, and 20,000 bottles of Flammulina velutipes mushroom spores. The temperature, humidity, and carbon dioxide concentrations, which directly affect the growth of the mushroom, were collected and analyzed from the environmental sensors installed at the winter mushroom cultivation area. The initial temperature was found to be 14.5℃, which was maintained at 14℃ to 15℃ until the 10th day. In the restriction phase, the initial temperature was 4℃ and was maintained between 2℃ and 3℃ until the 15th day, while during the growth phase, it was maintained between 7.5℃ to 9.5℃. Analysis of the humidity data revealed initial humidity to be 100%, which varied between 88% to 98% during primordia formation period. The humidity remained between 77% to 96% until the 15th day, in the restriction phase and between 75% to 83% during the growth phase. The initial carbon dioxide concentration was 3,500 ppm and varied between 3,500 ppm to 6,000 ppm during primordia formation period and was maintained at 6,000 ppm until the 15th day. During the growth phase, the carbon dioxide concentration was found to be over 6,000 ppm. Fruiting body characteristics of 'CHIKUMASSHU T-011' cultivated in the farmhouse were as follows: Pileus diameter of 7.5 mm and thickness of 4.1 mm, stipe thickness of 3.3 mm, and length of 154.2 mm. The number of valid fruiting bodies was 1,048 unit per 1,400 mL bottle, and the individual weight was 0.71 g per unit. The yield of fruiting bodies was 402.8 g per 1,400 mL bottle.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Development of K-bioassay for the Efficient Potassium Fertilization of Citrus Tree ($K(^{86}Rb)-bioassay$를 이용한 감귤나무의 가리영양진단법 개발)

  • U, Zang-Kual;Han, Hae-Ryong;Moon, Duk-Young;Kim, Chang-Myung;Lim, Han-Cheol;Moon, Do-Kyung;Song, Sung-Jun
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.182-188
    • /
    • 1994
  • Similar to the $^{42}K$ uptake, $^{86}Rb$ uptake by the roots of Hordeum distichum grown in the hydroponic culture was negatively correlated with the concentration of K supplied previously, showing that $^{86}Rb$ can be used for the K-bioassay. $^{86}Rb$ having longer half life (18.86 day) than $^{42}K$ (12.36 hr) allowed the use of larger number of root samples. $^{86}Rb$ uptake of 3 years old Citrus unshiu Marc. grown in water culture decreased drastically with the increase of K concentration of the culture solution, thus demonstrating that the nutrition status of K for citrus trees can be diagnosed by K-bioassay using $^{86}Rb$ tracer. $^{86}Rb$ uptake by the excised roots of Hordeum distichum grown in the pot with different K fertilizations was well correlated with the exchangeable K in soil. The amount of exchangeable K in soil for the optimal plant growth can be determined by its relationship. $^{42}K$ and $^{86}Rb-uptake$ by the Hordeum distichum roots were markedly inhibited by $5{\times}10^{-3}\; M$ KCN in the bioassay solution, indicating that uptake is energy-dependent. There was no significant relationship between K content in citrus leaves and K concentration in the water-culture medium. It is concluded that K-bioassay is a potentially useful tool for determining of K requirement in citrus trees.

  • PDF

Seeding Soils and Tray Types Mediate Growth Characteristics of Perilla Seedlings (상토 및 트레이 종류에 따른 종실용 들깨의 육묘 특성)

  • Park, Jin-Ki;Han, Won-Young;Han, Kil-Su;Ryu, Jong-Soo;Won, Ok-Jae;Jeong, Tae-Uk;Yoon, Young-Ho;Bae, Jin-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • The purpose of this study was to analyze the growth characteristics of perilla according to the materials of the seedbed for the development of seedling plug technology suitable for the mechanical transplantation of perilla. Perilla (Perilla frutescens var. japonica Hara) cultivars Deulsaem and Sodam were used in this experiment. The composition ratios of 170 products from 16 companies published in the 'Korean Association of Seedbed Media' homepage were compared according to usage and type, and 11 products that corresponded to the average were selected. The seedbed was classified according to the seedbed for paddy rice as light-weight, semi-weight, and weight, and based on the seedbed for horticulture, as light-weight and ultra-light. The seedlings were placed in 72-cell (semi-automatic), 128-cell (automatic) and 220-cell (automatic) plug trays. We selected 2 light-weight seedbeds of paddy rice and 2 light-weight seedbeds of horticultural products with the highest plant growth. We analyzed plant height and mat formation of the perilla roots. Results showed that the perilla height and mat formation were the best in light-weight seedbeds of paddy rice (product R1). Therefore, light-weight seedbeds of rice (product R1) were suitable for perilla plant transplantation. The estimated major components were vermiculite 41.0%, cocopeat 31.0%, peat moss 5.7%, and red-yellow soil 20.0%. The mechanical transplantation of perilla significantly boosts plant growth and reduces sowing and thinning efforts. However, continuous evaluation of newly introduced, commercial seedbeds is needed.

Physiological Activity and Nutritional Composition of Pleurotus Species (느타리속 버섯류의 영양성분 및 생리활성)

  • Um, Su-Na;Jin, Gyoung-Ean;Park, Kye-Won;Yu, Young-Bok;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.90-96
    • /
    • 2010
  • In this study, the anti-oxidant, anti-tumorigenic, anti-hypertensive, anti-thrombic, anti-diabetic, and anti-inflammatory properties of 18 different species of genus Pleurotus were investigated. In addition, the amino acid, $\beta$-glucan, and polyphenol content were also measured. All species contained more than 20 mg% of polyphenol with the highest contents found in Pleurotus cornucopiae var. citrinopileatus (yellow pleurotus) ($39.13{\pm}0.82\;mg%$). The $\beta$-glucan contents was also the highest in yellow Pleurotus ($37.67{\pm}0.22%$) followed by Won-Hyeong1 (C, $28.75{\pm}0.61%$) and Jang-an PK (A, $27.95{\pm}0.33%$). The yellow Pleurotus exhibited the highest antioxidant activity as assessed by the DPPH scavenging rate with an $IC_{50}$ value of $2.94{\pm}0.44\;mg/mL$. Ethanol extracts from the yellow Pleurotus treated at 1% concentration showed cytotoxic activity up to 36.9% in the human embryonic kidney 293T cell lines. The yellow Pleurotus also showed the highest inhibitory effects on ACE activity ($60.52{\pm}0.2%$). Finally, the yellow Pleurotus exhibited anti-diabetic and anti-inflammatory properties as shown by inhibition of $\alpha$-amyloglucosidase activity ($50.5{\pm}0.8%$) and nitric oxide production ($68.4{\pm}0.3%$). Taken together, our data indicate the yellow pleurotus is a promising functional food ingredients.

Effects of Selenium Supplying Methods on the Growth and Se Uptake of Hydroponically Grown Tomato Plants (Selenium공급방법이 수경재배 토마토의 생장과 Se 흡수에 미치는 영향)

  • Lee Cheol-Kyu;Cho Kyung-Cheol;Lee Jeong-Hyun;Cho Ja-Yong;Seo Beom-Seok;Yang Won-Mo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.284-288
    • /
    • 2005
  • This study was conducted to clarify the effects of supplying methods of selenium on the growth and Se uptake of hydroponically grown tomato plants. Tomato seeds (Lycopersicum esculentum Mill. cv. Momotaro T-93, Daki Seed Co.) were sown in plug tray with fifty holes, and raised for sixty days. Tomato seedlings transplanted to coco fiber slabs were supplied with the nutrient solutions adjusted to EC $2.3dS{\cdot}m^{-1}$ and pH $5.8\~6.2$ recommended by the Japanese Horticultural Experiment Station. Selenium forms used were inorganic $SeO_2$ (here in after referred to Se) and organic selenium chlenium with sugar fatty acid ester (here in after referred to chelated-Se). 10 ppm selenium solutions were treated to tomato plants with foliar applications, drenching, and foliar application plus drenching. Growth characteristics in terms of plant height, number of leaves, leaf area and chlorophyll content were significantly increased in the plot of foliar application ot Se, and in the plot of foliar application plus drenching of chelated-Se than other plots, respectively. Transported contents of selenium into the tomato fruits were highest as 0.302 ppm in the plot of foliar application plus drenching of chelated-Se. Also, it had tended to be higher in the plot of foliar application plus drenching than in the plots of foliar application or drenching in both of Se and chelated-Se. Foliar application and drenching of organic chelated-Se were effective to produce the functional tomato fruits.