• 제목/요약/키워드: Horse Fetal Muscle Cells

검색결과 3건 처리시간 0.014초

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Nogoy, Kim Margarette Corpuz;Sun, Jianfu;Sun, Bin;Wang, Ying;Tang, Lin;Yu, Jia;Jin, Xin;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.919-933
    • /
    • 2021
  • We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.

AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

  • Choi, S.H.;Park, S.K.;Johnson, B.J.;Chung, K.Y.;Choi, C.W.;Kim, K. H.;Kim, W.Y.;Smith, S.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권3호
    • /
    • pp.411-419
    • /
    • 2015
  • We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained $10{\mu}g/mL$ insulin and $10{\mu}g/mL$ pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with $40{\mu}M$ palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta ($CPT1{\beta}$) gene expression, but the increase in $CPT1{\beta}$ gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17-fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased $AMPK{\alpha}$ gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.