• 제목/요약/키워드: Hornet classification

검색결과 1건 처리시간 0.013초

딥러닝을 이용한 실시간 말벌 분류 시스템 (Real Time Hornet Classification System Based on Deep Learning)

  • 정윤주;이영학;이스라필 안사리;이철희
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1141-1147
    • /
    • 2020
  • 말벌 종은 모양이 매우 유사하기 때문에 비전문가가 분류하기 어렵고, 객체의 크기가 작고 빠르게 움직이기 때문에 실시간으로 탐지하여 종을 분류하는 것은 더욱 어렵다. 본 논문에서는 바운딩 박스를 이용한 딥러닝 알고리즘을 기반으로 말벌 종을 실시간으로 분류하는 시스템을 개발하였다. 훈련 영상의 레이블링 작업 시 바운딩 박스 안에 포함되는 배경 영역을 최소화하기 위하여 말벌의 머리와 몸통 부분만을 선택하는 방법을 제안한다. 또한 실시간으로 말벌을 탐지하고 그 종을 분류할 수 있는 최선의 알고리즘을 찾기 위하여 기존의 바운딩 박스 기반 객체 인식 알고리즘들을 실험을 통하여 비교한다. 실험 결과 컨볼루션 레이어의 활성함수로 mish 함수를 적용하고, 객체 검출 블록 전에 공간집중모듈(Spatial Attention Module, SAM)을 적용한 YOLOv4 모델을 사용하여 말벌 영상을 테스트한 경우 평균 97.89%의 정밀도(Precision)와 98.69%의 재현율(Recall)을 나타내었다.