• Title/Summary/Keyword: Horner-Wadsworth-Emmons (HWE) reaction

Search Result 3, Processing Time 0.015 seconds

A New Synthesis of Triphenylphosphorane Ylide Precursors to α-Keto Amide/Ester and Tricarbonyl Units via Horner-Wadsworth-Emmons Reaction

  • Lee, Kie-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2776-2782
    • /
    • 2010
  • Newly developed Horner-Wadsworth-Emmons (HWE) reagents 5 having triphenylphosphorane ylide subunits readily condensed with various carbonyl compounds under mild reaction conditions to afford $\beta,\gamma$-unsaturated $\alpha$-keto triphenylphorane ylides in good to excellent yields, which were hydrogenated over Pd-C (10%)/$H_2$ (1 atm) to give the corresponding $\alpha$-keto triphenylphorane ylides in quasi-quantitative yields. These triphenyphosphorane ylides have been utilized as the precursors to $\alpha$-keto amide/ester and vicinal tricarbonyl units in Wasserman's synthetic protocols, and have previously been prepared only from carboxylic acids/acid chlorides. Our new approaches provide excellent alternatives for the synthesis of triphenylphosphorane ylide precursors to $\alpha$-keto amide/ester and vicinal tricarbonyl units directly from carbonyl compounds in good to excellent yields.

Synthsis and Antiviral Evaluation of Novel 3'-and 4 -Doubly Branched Carbocyclic Nucleosides as Potential Antiviral Agents

  • Hong, Joon-Hee
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1109-1116
    • /
    • 2003
  • A series of 3'- and 4'-branched carbocyclic nucleosides 25, 26, 27, 28, 29 and 30 were synthesized starting from simple acyclic ketone derivatives. The construction of the required quaternary carbon was made using a [3,3]-sigmatropic rearrangement. In addition, the installation of a methyl group in the 3'-position was accomplished using a Horner-Wadsworth-Emmons (HWE) reaction with triethyl 2-phosphonopropionate. Bis-vinyl was successfully cyclized using a Grubbs' catalyst (Ⅱ). Natural bases (adenine, cytosine, uracil) were efficiently coupled with the use of a Pd(0) catalyst.