• Title/Summary/Keyword: Horizontal probe

Search Result 57, Processing Time 0.026 seconds

Thermal Diffusivity Measurement of Backfilling Materials for Horizontal Ground Heat Exchanger Using Dual-Probe Method (이중탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 측정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • Storage and transfer heat in soils are governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the measured results of the thermal diffusivity of soils(silica, quartzite, limestone, sandstone, and masonry soils) used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities and volumetric heat capacities using dual-probe method and (ii) compare the estimates from the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Measurements made by using the dual-probe method agreed well with independent estimates obtained using the single-probe method.

Thermal Diffusivity Evaluation of Backfilling Materials for Horizontal Ground Heat Exchanger Using Single-Probe Method (단일 탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 산정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.356-364
    • /
    • 2011
  • Storage and transfer heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the thermal diffusivity of soils (silica, quartzite, limestone, sandstone, granite, and two masonry soils used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities using single-probe method and (ii) use the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Combined algorithm with and improved model for the thermal conductivity of soils and the constituent equation provides accurate estimates of the soil thermal diffusivity.

Development of Prototype Stylus Prototype for Large Optics Testing

  • Yang, Ho-Soon;Walker, David
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.60-66
    • /
    • 2001
  • The authors discuss a prototype stylus profilometer designed to measure large optics. It consists of a low contact force type probe system, laser reference system, interferometric distance measurement system, and horizontal driving system. The probe contacts the surface ; the height and the horizontal distances of the measurement points are measured by the interferometer. The freely propagated laser beam provides the reference line during the measurement. The developed stylus profilometry shows only $\pm$60 nm of P-V error for the 157 mm diameter spherical mirror.

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

Comparison Study about Surface Mapping of Motor Points in Biceps Brachii Muscle Using Surface EMG and Electric Probe (표면 근전도와 전기 탐침기를 이용한 상완이두근의 운동점 표지 비교 연구)

  • Park, Jaewon;Keum, Dongho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.1
    • /
    • pp.85-96
    • /
    • 2018
  • Objectives This study was performed to compare the electrical methods of motor points mapping using surface EMG and electric probe (Pointer Excel II). Methods 32 healthy adults (male 16, female 16) were selected. and classified into two groups; surface EMG group, electric probe (Pointer Excel II) group. In surface EMG group, motor points were searched by recoding the compound muscle potentials. In electric probe (Pointer Excel II) group, motor points were searched by scanning the skin with Pointer Excel II at low level stimulation. The locations of the motor points were expressed as X and Y values in relation to the reference line. The horizontal reference line was set as elbow crease and the vertical reference line was set as the line connecting coracoid process to the center of the horizontal reference line. The data was analyzed by 'Independent T-test' and 'equivalence test'. Results 1. The motor points of short head and long head of biceps brachii muscle were located at about 2/3 length of the vertical reference line from coracoid process and about 1/5~1/4 length of the half of the horizontal reference line from the vertical reference line in both group. 2. The motor points of the short head were located more distally and close to the vertical reference line (p<0.001). 3. In surface EMG group, the motor points of the long head were located more laterally in the female than male. And the motor points of the long head were located more distally in the left side than right side (p<0.05). In electric probe (Pointer Excel II) group, similar tendency was observed but there was no statistically significant difference (p>0.05). 4. As a result of the equivalence test between surface EMG group and electric probe (Pointer Excel II) group, the confidence intervals of the difference were within the equivalence limit. Therefore, the locations of the motor points searched by two ways are equa l (p>0.05, equivalence interval=3%). Conclusions The results indicate that electric probe (Pointer Excel II) can be used to search the motor points instead of surface EMG. This might improve the clinical efficiency when using the motor points to treat muscle dysfunction.

Measurement of the Three-Dimensional Flow Fields of a Gun-Type Gas Burner Using Triple Hot-Wire Probe (3중 열선 프로브를 이용한 Gun식 가스버너의 3차원 유동장 측정)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.23-31
    • /
    • 2006
  • Mean velocities and turbulent characteristics in the three-dimensional flow fields of a gun-type gas burner were measured by using triple hot-wire probe (T-probe) in order to compare them with the results already presented by X-type hot-wire probe (X-probe). Vectors obtained by the measurement of two kinds of probes in the horizontal plane and in the cross section respectively show more or less difference in magnitude each other, but comparatively similar shape in overall distribution. Axial mean velocity component along the centerline shows that the value by T-probe is about ten times smaller than that by X-probe above the range of X/R=3. Also, the axial component of turbulent intensity along the centerline appears the biggest difference between the two probes. Moreover, axial mean velocity component, axial turbulent intensity component and rotational along the Y-directional distance show a big difference between slits and swirl vanes. On the whole, the values by T-probe appear smaller than those by X-probe.

  • PDF

Development and Characterization of Vertical Type Probe Card for High Density Probing Test (고밀도 프로빙 테스트를 위한 수직형 프로브카드의 제작 및 특성분석)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.825-831
    • /
    • 2006
  • As an increase of chip complexity and level of chip integration, chip input/output (I/O) pad pitches are also drastically reduced. With arrival of high complexity SoC (System on Chip) and SiP (System in Package) products, conventional horizontal type probe card showed its limitation on probing density for wafer level test. To enhance probing density, we proposed new vertical type probe card that has the $70{\mu}m$ probe needle with tungsten wire in $80{\mu}m$ micro-drilled hole in ceramic board. To minimize alignment error, micro-drilling conditions are optimized and epoxy-hardening conditions are also optimized to minimize planarity changes. To apply wafer level test for target devices (T5365 256M SDRAM), designed probe card was characterized by probe needle tension for test, contact resistance measurement, leakage current measurement and the planarity test. Compare to conventional probe card with minimum pitch of $50{\sim}125{\mu}m\;and\;2\;{\Omega}$ of average contact resistance, designed probe card showed only $22{\mu}$ of minimum pitch and $1.5{\Omega}$ of average contact resistance. And also, with the nature of vertical probing style, it showed comparably small contact scratch and it can be applied to bumping type chip test.

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

A Pilot Study of Stiffness Mesurements for Tunnel-Face Materials Using In-hole Seismic Method (인홀 시험을 이용한 터널 막장의 암반강성 측정에 대한 적용성 연구)

  • Mok, Young-Jin;Kim, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.445-456
    • /
    • 2005
  • The research concentrates on improving the in-hole seismic probe, which has been developed in past five years, to be used in stiffness measurements of tunnel-face materials. The probe was down-sized to be fit in 45-mm diameter holes(or BX) drilled by a jumbo-drill, which is used to drill holes to install explosives for tunneling. Also trigger system was improved by using a down-speeding motor for operating convenience and air packing system was replaced with a set of plate-springs to eliminate supply of compressed air. These modifications are to adjust the probe for the unfavourable environment inside of tunnels and to test without any further drilling cost. The probe and testing procedure were successfully adopted with horizontal holes drilled by a jumbo-drill at a tunnel-face to evaluate the stiffness of rock mass. The measured shear wave velocities can be used to estimate deformation properties of rock mass for tunnel analyses.

  • PDF

A Study on the Wave Modes in Measurements of the Crack Depth of Concrete by Ultrasonic Waves (초음파에 의한 콘크리트의 균열깊이 측정에 있어서 음파모드에 관한 연구)

  • Han, E.K.;Lee, S.H.;Kim, J.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 1989
  • As the necessity of the safety diagnosis of the concrete structure, more reliable ultrasonic technique to qualify the concrete is required. In this study, the artificial surface crack depth is measured using several types of the ultrasonic probes. As results, the horizontal shear wave probe is most useful to determine the crack depth compared to the other probes. For the surface wave probe, the ultrasonic wave path is changed with the surface crack depth.

  • PDF