• Title/Summary/Keyword: Horizontal member

Search Result 145, Processing Time 0.024 seconds

Reliability Analysis of Three-Dimensional Temporary Shoring Structures Considering Bracing Member and Member Connection Condition (가새재 및 부재 연결 조건을 고려한 3차원 가설 동바리 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • This study performs reliability analysis of three-dimensional temporary shoring structures with three different models. The first model represents a field model which does not have diagonal bracing members. The installation of bracing members is often neglected in the field for convenience. The second model corresponds to a design model which has the bracing members with the hinge connection of horizontal and bracing members at joints. The third model is similar to the second model but the hinge connection is replaced with partial rotational stiffness. The reliability analysis results revealed that the vertical members of the three models are safe enough in terms of axial force, but the vertical and horizontal members exhibit a big difference among the three models in terms of combination stress of axial force and bi-axial bending moments. The field model showed significant increase in failure probability for the horizontal member, and thus the results demonstrate that the bracing member should be installed necessarily for the safety of the temporary shoring structures.

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

Flexural Strength and Rotational Stiffness Estimation of Joint between Vertical and Horizontal Members in System Support (시스템 동바리 수직재와 수평재 연결부의 휨강도와 회전 강성 평가)

  • Won, Jeong-Hun;Lee, Hyung Do;Choi, Myeong-Ki;Park, Man Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.46-53
    • /
    • 2018
  • This study examined the maximum resistant moment and nonlinear rotational stiffness of wedge joint between the vertical and horizontal members of system supports. To examine the maximum resistant moment and propose the nonlinear rotation stiffness of wedge joint, 6 specimens were tested and additional 3 specimens, where the horizontal member was welded to the vertical member, were tested to compare the moment capacity of wedge joints. The average maximum moment in the tested wedge joint was 1.183 kNm which represented about 70 % of the maximum moment developed in the welded specimens. And, as simulating nonlinear rotational stiffness of the wedge joint, a tri-linear model was suggested. The rotational stiffness was estimated as 23.095 kNm/rad in first stage, 7.945 kNm/rad in second stage, and 3.073 kNm/rad in third stage. For the failure mode, the specimen with the wedge joint showed the failure of joint between vertical and horizontal members. However, the specimen with welded joint represented the yielding of horizontal members.

Structural Behavior Analysis of System Supports according to Boundary Condition of Joints between Vertical and Horizontal Members (시스템 동바리의 수직재와 수평재 연결부 경계조건에 따른 거동 분석)

  • Kim, Gyeoung Yun;Won, Jeong-Hun;Kim, Sang-Hyo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • This study examined the effect of rotational stiffness of joints between vertical and horizontal members in system supports. In order to prevent repeated disasters of system supports, it is important to examine the accurate behavior of system supports. Among various factors affecting the complex behavior of system supports, this study focused on the stiffness of joints between vertical and horizontal members. The considered joint was modelled by a rotational spring, but the translational displacements were fixed. The stiffness of rotational spring was calculated by utilizing the usable experimental data. In addition, the hinge connection condition, which is generally considered in design and only restrict the translational displacements, was modelled to compare the results. The case with the rotational stiffness in joints showed 3.5 times buckling loads compared to the case without the rotational stiffness. Thus, the structural behavior of the vertical member in system supports was similar to the vertical member with the fixed condition. For the combined stresses of vertical members, the combined stress ratios were reduced 5~6% by considering the rotational stiffness of connecting parts. However, for the horizontal member where showed relatively small stress range, the stresses were increased 2.3~7.6 times by considering the rotational stiffness in connecting parts.

Development of Corner-Supported Auto Climbing Formwork System (강합성코어벽을 활용한 코너지지형 거푸집시스템 개발)

  • Hong, Geon-ho;Shim, Woo-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.171-178
    • /
    • 2019
  • Auto Climbing Formwork System (ACS) for construction of high-rise building is a construction method for automatically lifting the formwork system supported by the anchor on the pre-constructed concrete wall. It has excellent construction speed and quality, but it has the possibility of structural failure depending on the quality of concrete and also has low economical efficiency due to the use of foreign technology. In order to overcome these problems, this study conducted an optimum design for the development of a new concept of Corner Supported Auto Climbing System (CS-ACS) in conjunction with the development of corner steel-reinforced concrete core wall system. For the design the formwork system, the basic module and structural member compositions were planned, and the structural analysis program was used to analyze the optimum member's cross section and spacing. As a result, the horizontal displacement and the stress of the horizontal members were influenced by the spacing more than the cross-section of the member. On the other hand, vertical members did not affect the displacement and stress of the formwork system. The form tie was very effective in controlling the displacement when adjusting the spacing of the horizontal members, but when the spacing of the form tie is more than 1,500mm, it is analyzed that form tie is yielding in basic module. When the span of the formwork system is more than 30m, it is analyzed that the basic module needs to be changed because of the increase of overall displacement.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Connection Behavior of FRP Box Member of Connection Method (연결방법에 따른 FRP 박스 부재의 연결거동 특성)

  • Jang, Hwa-Sup;Kim, Ho-Sun;Kwak, Kae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This is a basic experimental study to apply FRP modular box member to a variety of construction structures exposed to flexural strength, such as a slab and a girder. Tests were conducted under various conditions in order to analyze jointing performance features of the developed FRP modular box member as a large section. For the methods of jointing FRP modular box member, chemical connection, mechanical connection, and a combination of both were used to test both vertical and horizontal jointing. As a result of the test, using urethane+two bolts+sheets was the most efficient method of connecting FRP modular box member, and confirmed the efficient behavior by a finite element analysis.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

A Study on the Shape of Section in Member and Stress Tolerant Structural System in the Frame of Green Houses (내재해성이 우수한 비닐하우스 부재의 단면형상 및 구조시스템에 관한 연구)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.67-75
    • /
    • 2012
  • The damage of greenhouse has been increasing due to frequent collapse of frame in greenhouse caused by the heavy snow and strong wind. But, greenhouses are constructed by steel tube members of pipe style and pin connection of them, so these greenhouses are very weak. Therefore, this study was carried out to find the type of member section and structural frame system in stress tolerant greenhouses. The modeling types for analysis were designed in accordance with structural frame configuration and member section in greenhouse. These types of models, which are existing type, diagrid type, symmetric and asymmetric section type of frame member in greenhouse were classified. Displacement analysis varying the vertical and horizontal loads for a series of models was carried out. As a result of this paper, it was verified that the structural frame configuration of diagrid type and asymmetric type of member section is better than existing type in the frame of greenhouses against snow loads and wind loads.

A Study on the Characteristics of Member Force, Horizontal Displacement and Concrete Strength by Design Elements of SPW Retaining Walls (SPW 흙막이 벽체의 설계요소별 부재력과 수평변위 및 콘크리트강도 특성 연구)

  • Wan-Ho Kim;Yu-Seok Shin;Yeong-Jin Lee;Yong-Chai Chang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In areas where excavation works are carried out, it is very important to select a retaining wall method to minimize ground water level and ground subsidence changes. In this regard, the use of Secant Pile Wall(SPW) method, which can complement the disadvantages of the CIP method, is gradually domestic increasing for the construction of retaining wall method. This study investigated the design elements of the SPW method and the interrelationship between the structural stability factors of the wall. The design elements for the retaining method are the overlap length between piles, pile diameter, and the specifications of the H-Beam specifications, while the structural stability factors of the wall are the bending stress, shear stress, horizontal displacement, and concrete strength. The study results showed that the pile diameter and H-Beam specifications have a significant impact on the capacity of the H-Beam, the overlap length and pile diameter have a significant impact on the horizontal displacement, and the pile diameter and H-Beam specifications have a significant impact on the required strength of the concrete.