• Title/Summary/Keyword: Horizontal irregularity

Search Result 15, Processing Time 0.024 seconds

Determination of torsional irregularity in response spectrum analysis of building structures

  • Aliakbari, Fatemeh;Garivani, Sadegh;Shahmari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.699-709
    • /
    • 2020
  • Torsional irregularity is one of the most probable types of horizontal irregularity and existence of this irregularity in most of the structural loading codes is determined by calculating the ratio of the maximum to the average story drift. No specific method has been previously recommended by the codes to calculate the mentioned ratio in the response spectrum analyses. In the current investigation, nine steel building structures with different plan layouts and number of stories have been analyzed and designed in order to evaluate the efficiency of three methods for calculating the ratio of the maximum to the average story drift in the response spectrum analyses. It should be noted that one of these methods is the approach used by current version of ETABS software andother ones are proposed in this paper. The obtained results using the proposed methods are compared with the time history analysis results. The comparisons show that one of these methods underestimates the mentioned ratio in all studied models, however, the other two methods have shown similar results. It is also found that the plan layouts and irregularities can affect how these methods estimate the ratios compared to those obtained by the time history analysis. Generally, it can be concluded that all of these methods can properly predict the ratio with acceptable errors.

Evaluating contradictory relationship between floor rotation and torsional irregularity coefficient under varying orientations of ground motion

  • Zhang, Chunwei;Alam, Zeshan;Samali, Bijan
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1027-1041
    • /
    • 2016
  • Different incident angles of ground motions have been considered to evaluate the relationship between floor rotation and torsional irregularity coefficient. The issues specifically addressed are (1) variability in torsional irregularity coefficient and floor rotations with varying incident angles of ground motion (2) contradictory relationship between floor rotation and torsional irregularity coefficient. To explore the stated issues, an evaluation based on relative variation in seismic response quantities of linear asymmetric structure under the influence of horizontal bi-directional excitation with varying seismic orientations has been carried out using response history analysis. Several typical earthquake records are applied to the structure to demonstrate the relative variations of floor rotation and torsional irregularity coefficient for different seismic orientations. It is demonstrated that (1) Torsional irregularity coefficient (TIC) increases as the story number decreases when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, TIC either decreases as the story number decreases or there is no specific trend for TIC. Floor rotation increases in proportion to the story number when the ground motion is considered along reference axes of structure. For incident angles other than structure's reference axes, floor rotation either decreases as the story number increases or there is no specific trend for floor rotation and (2) TIC and floor rotation seems to be approximately inversely proportional to each other when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, the relationship can even become directly proportional instead of inversely proportional.

Evaluation of Track irregularity due to Adjacent Excavation Work on Serviced Urban Transit (도시철도 인접굴착공사에 따른 운행선 궤도의 궤도틀림 분석)

  • Choi, Jung-Youl;Lee, Ho-hyun;Kang, You-Song;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.481-487
    • /
    • 2020
  • In this study, finite element analysis was performed to evaluate the track irregularity of the existing track system on urban transit according to the large-scale excavation work that is constructed adjacent to the serviced line. Based on the numerical analysis, the effect of track irregularity generated during the step-by-step construction process was analytically derived, and the stability in terms of track deformation was evaluated through comparison with related standards. As the results, in the case of track irregularity items evaluated based on the relative displacement difference at a certain distance, such as alignment and vertical irregularity, it occurred most clearly at the location where deformation of the existing structure begins, such as the end point of adjacent excavation work. On the other hand, the overall vertical and horizontal displacement of the track was the largest deformation at the center of the construction section. The vulnerable position of the deformed side of the existing structure due to adjacent excavation is analytically proven that the both of the end point section and the center of the construction can be a vulnerable position in terms of track irregularity.

Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate

  • Singh, Abhishek K.;Negi, Anil;Koley, Siddhartha
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • The present study investigate the compressive stress, shear stress, tensile stress, vertical electrical displacement and horizontal electrical displacement induced due to a load moving with uniform velocity on the free rough surface of an irregular transversely isotropic functionally graded piezoelectric material (FGPM) substrate. The closed form expressions ofsaid induced stresses and electrical displacements for both electrically open condition and electrically short condition have been deduced. The influence of various affecting parameters viz. maximum depth of irregularity, irregularity factor, parameter of functionally gradedness, frictional coefficient of the rough upper surface, piezoelectricity/dielectricity on said induced stresses and electrical displacements have been examined through numerical computation and graphical illustration for both electrically open and short conditions. The comparative analysis on the influence of electrically open and short conditions as well as presence and absence of piezoelectricity on the induced stresses and induced electrical displacements due to a moving load serve as the salient features of the present study. Moreover, some important peculiarities have also been traced out by means of graphs.

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.

Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads (보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석)

  • Chakraborty, Sudipta;Islam, Md. Rajibul;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.10-19
    • /
    • 2022
  • Irregularity in structural shape is a ubiquitous phenomenon. Structural hazards evoked from irregularity need to be checked against extreme lateral loadings. Structures containing four distinct types of irregularities in terms of continuity and discontinuity in upper half-length and all story levels along with O-shape are investigated. The structures were analyzed numerically and different seismic responses such as displacements, bending moment, axial forces, torsions, story drift, etc. were scrutinized. The seismic and wind load analysis was conducted for ACI 318-11 conditions. Results show that buildings having discontinuous beams on the upper half exhibit better resilience. It is also concluded that O-shaped building structures provide better resistance to overturning, making this shape relatively safe.

A Study on Track Deformation Characteristics of Turnout System by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 도시철도 분기기 궤도의 변형 특성에 관한 연구)

  • Kim, Hae-Sung;Choi, Jung-Youl;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2022
  • The structure of the turnout track is very complex, so it is a facility that is more difficult to maintain and requires detailed management than a general track type. The purpose of this study is to analyze the effect on the deformation of the turnout system of the ground section due to the excavation work adjacent to the serviced urban railways. In this study, based on finite element analysis for each stage of adjacent excavation, the track deformation for each major location of turnout system was analyzed in consideration of the layout of the turnout system installed on the ground section, and the safety and stability was confirmed by comparing it with the track irregularity regulation. As a result of the study, it was found that the major construction stage affecting the track deformation of the turnout system on the ground section was the final stage of excavation. In addition, although the vertical displacement which is a vertical irregularity occurred relatively large, it was analyzed that the horizontal deformation was dominant overall, because of the excavation site is located on the side of the turnout system. In addition, it was analyzed that the amount of displacement at each major location of the turnout system is different, and there is a possibility that there may be a twist irregularity due to the deviation of the track deformation for each location according to the distance from the excavation site. Therefore, it was analyzed that it is necessary to classify and manage the importance of the track deformation of the turnout system of actual operating line, including additional displacement due to adjacent excavation, based on the track irregularity that has occurred at each location where the major deformation characteristics occur.

Seismic Performance of Urban Structures with Various Horizontal Irregularities using Equivalent Static Analysis (다양한 수평비정형성을 갖는 도시구조물의 등가정적해석에 의한 내진성능분석)

  • Cui, Ji Long;Chey, Min-Ho;Kim, Sung-Il
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • With the change and development of modem architecture, architectural configurations are increasingly diversified and irregular. However, the building configurations without proper seismic considerations may cause severe damages under earthquake loads. Therefore, it is necessary to establish and implement more properly classified, specific and advanced conceptual seismic design strategies. This study explores the relationship between building configurations and seismic performance by adopting several horizontal building configurations with various re-entrant corners. For the clear comparison of five different horizontal configuration models, almost aspects of structural properties are equalized. The equivalent static analyses are conducted with the aim of understanding the characteristics of various re-entrant comers under standard earthquake loads. The seismic advantages of regular configuration model are clearly approved and the structural weak points at the re-entrant comers are investigated numerically and graphically.

Dynamic Modeling and Controller Design for Active Vibration Control of Elevator (엘리베이터 능동진동제어를 위한 동적 모델링 및 제어기 설계)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.71-76
    • /
    • 2008
  • This paper is concerned with the active vibration control of elevator by means of the active roller guide. To this end, a dynamic model for the horizontal vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the equations of motion using the LQR theory and applied to the numerical model. Rail irregularity and wind pressure variation were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

  • PDF

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF