• Title/Summary/Keyword: Horizontal deformation

Search Result 485, Processing Time 0.029 seconds

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Biaxial Compressive Deformation Characteristics of Double Round Copper Pipes (2중 원형동관의 2축압축 변형특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • The deformation characteristics of a double round copper pipe and a single round copper pipe under biaxial compression were studied using a horizontal compression die. The change in punch load and in deformation behavior was measured during the experiments using various compressive deformation rates in the range of 10mm/min. ~ 450mm/min. The maximum punch load for both the double round copper pipe and the single round copper pipe decreased with increasing compressive deformation rate. The maximum punch load for the single round copper pipe was twice that of the double round copper pipe. After a 4.0mm stroke, the deformed shape of the single round copper pipe remained rectangular. However the outer tube of double round copper pipe remained rectangular while the inner tube was clover shaped. The stress and strain distributions in the double round copper pipe and the single round copper pipe show clear differences. The results of numerical simulations using Deform-2D are in good agreement with experimental results.

Investigation of three-dimensional deformation mechanisms of box culvert due to adjacent deep basement excavation in clays

  • Bu, Fanmin;Yu, Wenrui;Chen, Li;Wu, Erlu
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.565-577
    • /
    • 2022
  • In this study, a series of three-dimensional numerical parametric study was conducted to investigate deformation mechanisms of an existing box culvert due to an adjacent multi-propped basement excavation in clays. Field measurements from an excavation case history are first used to calibrate a baseline Hardening Soil Small Strain (HS-small) model, which is subsequently adopted for parametric study. Results indicate that the basement-box culvert interaction along the basement centerline can be considered as a plane strain condition when the length of excavation (L) reaches 14 He (i.e., final excavation depth). If a plane strain condition (i.e., L/He=12.0) is assumed for analyzing the basement-box culvert interaction of a short excavation (i.e., L/He=2.0), the maximum settlement and horizontal movement of the box culvert are overestimated significantly by up to 15.7 and 5.1 times, respectively. It is also found that the deformation of box culvert can be greatly affected by the basement excavation if the distance between the box culvert and retaining wall is less than 1.5 He. The induced deformation in the box culvert can be dramatically reduced by improving the ground inside the excavation or implementing other precautionary measures. For example, by adding jet grouting columns within the basement and installing an isolation wall behind the retaining structures, the maximum settlements of box culvert are shown to reduce by 37.2% and 13.4%, respectively.

Seismic Response of Arch Structure with Base Isolation Device Depending on Installation Angle (면진장치 설치각도에 따른 아치구조물의 지진응답)

  • Kim, Gee-Cheol;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • The seismic behaviors of the arch structure vary according to the rise-span ratio of the arch structure. In this study, the rise-span ratio (H/L) of the example arch structure was set to 1/4, 1/6, and 1/8. And the installation angle of the seismic isolator was set to 15°, 30°, 45°, 60° and 90°. The installation angles of the seismic isolator were set by analyzing the horizontal and vertical reaction forces according to the rise-span ratio of the arch structure. Due to the geometrical and dynamic characteristics of the arch structure, the lower the rise-span ratio, the greater the horizontal reaction force of the static load, but the smaller the horizontal reaction force of the dynamic load. And if the seismic isolator is installed in the direction of the resultant force of the reaction forces caused by the seismic load, the horizontal seismic response becomes small. Also, as the installation angle of the seismic isolator increases, the hysteresis behavior of the seismic isolator shows a plastic behavior, and residual deformation appears even after the seismic load is removed. In the design of seismic isolators for seismic response control of large space structures such as arch structures, horizontal and vertical reaction forces should be considered.

Behavior of wall and nearby tunnel due to deformation of strut of braced wall using laboratory model test (실내모형시험을 통한 흙막이벽체 버팀대 변형에 따른 흙막이벽체 및 인접터널의 거동)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.593-608
    • /
    • 2018
  • If a problem occurs in the strut during the construction of the braced wall, they may cause excessive deformation of the braced wall. Therefore, in this study, the behavior of the braced wall and existing tunnel adjacent to excavation were investigated assuming that the support function of strut is lost during construction process. For this purpose, a series of model test was performed. As a result of the study, the earth pressure in the ground behind wall was rearranged due to the deformation of the braced wall, and the ground displacements caused the deformation of adjacent tunnels. When the struts located on the nearest side wall from the tunnel were removed, the deformation of the braced wall and the tunnel deformation were the largest. The magnitude of transferred earth pressure depended on the location of tunnel. The increase of the cover depth of tunnel from 0.65D to 2.65D caused the increase of the earth pressure by 25.6%. As the distance between braced wall and tunnel was increased from 0.5D to 1.0D, the transferred earth pressure increased by 16% on average. Horizontal displacements of braced wall by the removal of the strut tended to concentrate around the removed struts, and the horizontal displacement increased as the strut removal position is lowered. The tunnel displacement was maximum, when the cover depth of tunnel was 1.15D and the horizontal distance between braced wall and the side of tunnel was 0.5D. The minimal displacement occurred, when the cover depth of tunnel was 2.65D and the horizontal distance between braced wall and the side of tunnel was 1.0D. The difference between the maximum displacement and the minimum displacement was about 2 times, and the displacement was considered to be the largest when it was in the range of 1.15D to 1.65D and the horizontal distance of 0.5D.

Prediction of Lateral Flow due to Embankments for Road Construction on Soft Grounds with Vertical Drains (연직배수재가 설치된 연약지반 상에 도로성토로 인한 측방유동 발생 예측)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.239-247
    • /
    • 2012
  • Some methods were proposed to predict lateral flow due to embankments for road constructions on soft grounds, in which vertical drains were placed. In order to investigate the prediction methods of lateral flow, 200 field monitoring data for embankments in thirteen road construction sites at western and southern coastal areas of the Korean Peninsula were analyzed. For analyzing the relationship between the safety factor of embankment slope and the horizontal displacement in soft grounds where horizontal drain mats were placed, it was reliable to apply the maximum horizontal displacement in soft ground instead of the horizontal displacement at ground surface. The maximum horizontal displacement was developed less than 50mm in fields where the safety factor of slope was more than 1.4, while the one was developed more than 100mm in fields where the safety factor of slope was less than 1.2. In safe fields where the maximum horizontal displacement were developed within 50mm, lateral flow would not happen since shear deformation was not appeared. On the other hand, shear failure would happen in the fields where the maximum horizontal displacement were developed more than 100mm. In such fields, embankments might be continued after some appropriate countermeasures should be prepared. Safe embankments can be performed on soft grounds, in which the stability number is less than 3.0 and the safety factor for bearing is more than 1.7. However, if the stability number is more than 4.3 and the safety factor for bearing is less than 1.2, shear deformation would begin and even shear failure would happen.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

Ductility of open piled wharves under reversed cyclic loads

  • Yokota, Hiroshi;El-Bakry, Hazem M.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.615-632
    • /
    • 2001
  • Ductility of open piled wharves under reversed cyclic loads has been investigated. Experimental testing of five wharf models having a scale of about 1:4 was conducted under the application of horizontal reversed cyclic loading. The experiments were designed to focus on the horizontal ultimate load, ductility and failure mode of the considered wharf models. Nonlinear numerical analyses using the finite element method were also performed on numerical models representing the experimentally tested wharves. The results of the experimental tests showed that open piled wharves possessed favourable ductile behaviour and that their load bearing capacity did not depreciate until a ductility factor of 3 to 4 was reached. The numerical analysis showed that the relative rotation that took place at the joints between the steel piles and the R.C. beam was responsible for a considerable portion of the total horizontal deformation of the wharves. Therefore, it was concluded that introducing the joint stiffness in calculating the deformations of open piled wharves was important to achieve reasonable accuracy.

Crustal Movement at Ol Doinyo Lengai based on GPS Measurements

  • Meshili, Valerie Ayubu;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.401-406
    • /
    • 2020
  • Continuously monitoring of Horizontal and Vertical movements in vulnerable areas due to earthquakes and volcanic activities is vital. These geohazard activities are the result of a slow deformation rate at the tectonic plate boundaries. The recent development of GPS (Global Positioning System) technology has made it possible to attain a millimeter level changes in the Earth's crust. This study used continuously observed GPS data at the flank of Ol Doinyo Lengai volcanic Mountain to determine crustal motion caused by impinging volcano from mantle convention. We analyzed 8 GPS observed from June 2016 to Dec 2019 using a well-documented Global Kalman Filter GAMIT/GLOBK software. The resulting velocity from GAMIT/GLOBK analysis was then used to compute the relative motion of our study area with respect to Nubia plate. Our analysis discovered a minor motion of less than 5mm/year in both horizontal and vertical components.

Analysis of a Two-Dimensional Section of Deforming Yacht Sails (변형을 고려한 요트 세일의 2차원 단면 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyung;Yoo, Jae-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.308-316
    • /
    • 2011
  • Although a yacht sails operate with large displacement due to very thin thickness, many studies for flow around yacht sails have not considered the sail deformation. The sail deformation not only caused a change in the center of effect(CE) on the sail but also a change in the thrust of the sail. The change of the CE and thrust affects the center of lateral resistance(CLR) and side forces of the hull, and the balance of the yacht. These changes affect the motion of the yacht which changes the velocity of the yacht. Thus, when analyzing the flow around yacht sails, the sail deformation should be considered. In the present study, fluid-structure-interaction(FSI) analysis of a two dimensional section of yacht sails was performed to consider the effects of sail deformation on the lift and drag performance. FSI and moving mesh methods were studied. Computational methods were verified using benchmark test cases such as the flow around horizontal and vertical cantilever beams. Shape deformation, pressure distribution, lift forces and separation flow were compared for both rigid and deformable sail.