• Title/Summary/Keyword: Horizontal axis

Search Result 680, Processing Time 0.032 seconds

Hydrofoil selection and design of a 50W class horizontal axis tidal current turbine model

  • Kim, Seung-Jun;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.856-862
    • /
    • 2015
  • Tidal current energy is an important alternative energy resource among the various ocean energy resources available. The tidal currents in the South-Western sea of Korea can be utilized for the development of tidal current power generation. Tidal power generation can be beneficial for many fishing nurseries and nearby islands in the southwest region of Korea. Moreover, tidal power generation is necessary for promoting energy self-sufficient islands. As tidal currents are always available, power generation is predictable; thus, tidal power is a reliable renewable energy resource. The selection of an appropriate hydrofoil is important for designing a tidal current turbine. This study concentrates on the selection and numerical analysis of four different hydrofoils (MNU26, NACA63421, DU91_W2_250, and DU93_W_210LM). Blade element momentum theory is used for configuring the design of a 50 W class turbine rotor blade. The optimized blade geometry is used for computational fluid dynamics (CFD) analysis with hexahedral numerical grids. Among the four blades, NACA63421 blade showed the maximum power coefficient of 0.45 at a tip speed ratio of 6. CFD analysis is used to investigate the power coefficient, pressure coefficient, and streamline distribution of a 50 W class horizontal axis tidal current turbine for different hydrofoils.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

Realization of Visual Servoing Loop for Position Control of a Nano Manipulator (나노조작기의 수평측 위치제어를 위한 Visual Servoing Loop 구성)

  • Choi, Jin-Ho;Park, Byong-Chon;Ahn, Sang-Jung;Kim, Dal-Hyun;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.251-252
    • /
    • 2007
  • Nano manipulator is used to manufacture Carbon NanoTube(CNT) tips. Using nano manipulator operator attaches a CNT at the end of Atomic Force Microscopy(AFM) tip, which requires a master mechanic and long manufacture time. Nano manipulator is installed inside Scanning Electron Microscopy (SEM) chamber to observe the operation. This paper presents a control of horizontal axis of nano manipulator via processing SEM image. Edges of AFM tip and CNT are first detected, the position information so obtained is fed to control horizontal axis of nano manipulator. To be specific, visual servoing loop was realized to control the axis more precisely.

  • PDF

Aerodynamic Design and Performance Prediction of Wind Turbine Blade (풍력터빈 블레이드 공력설계 및 성능예측)

  • Kim, Cheol-Wan;Cho, Tae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.677-681
    • /
    • 2011
  • Characteristics of vertical and horizontal axis wind turbines are explained. The speed and direction of wind on the blade of the Darrieus type turbine changes very severely. Therefore dynamic stall happens periodically and the wake from the front blade deteriorates the performance of rear blades. Blade element momentum theory(BEMT) is widely utilized for aerodynamic design and performace prediction of horizontal axis wind turbine(HAWT). Computation analysis and wind tunnel test are also performed for the performance prediction.

  • PDF

Development of Beam-to-Column Connection Details with Horizontal Stiffeners in Weak Axis of H-shape Column (수평스티프너를 이용한 철골 기둥-보 약축접합부 상세 개발에 관한 연구)

  • Lee, Do Hyung;Ham, Jeong Tae;Kim, Sung Bae;Kim, Young Ho;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.641-652
    • /
    • 2004
  • The strong beam-to-column axis connections in steel structures have been studied for a long time to develop the strength and resistance of the connections. There have been very few studies, however, related to weak axis connections. Domestically, the bracket-type connection is commonly used in weak axis connections to elevate the efficiency of the constructions when the steel structures are constructed. The bracket-type connection detail has been applied moderately to weak axis connections. Therefore, the bracket-type connection in weak axis connections might be brittle and over-designed. The results of this study showed that the welding on the web of the column and the beam was unnecessary. In addition, this study confirmed that the new weak axis connection proposed in this study was superior to the previous connection in terms of strength and ductility.

Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis (삼축 마이크로파일(TMP)의 현장수평재하시험과 3차원 수치해석을 통한 거동 분석)

  • Kim, Taehyun;Ahn, Kwangkuk;An, Sungyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2021
  • Various micropiles have been developed through research related to micropiles, which have been carried out with the increased use of micropiles. Among the micropile construction methods being developed, the triaxial micropile (tmp), which is recently developed for the purpose of increasing the horizontal bearing capacity (seismic resistance), is representative. The three-axis micropile has the advantage of a method that can resist horizontal load more effectively because three micropiles installed inclined on each axis resist horizontal load. However, there is a problem in effectively using this pile method due to insufficient research on the support characteristics of the triaxial group micropile. In order to effectively utilize the triaxial group micropile (tmp), it is required to evaluate the bearing capacity for the factors that affect the horizontal bearing capacity of the pile. Therefore, in this study, field horizontal loading Tests were performed for each load direction, field loading Tests were verified through three-dimensional finite element analysis, behavioral characteristics of triaxial micropiles were evaluated, and appropriate horizontal bearing capacity was analyzed in consideration of horizontal load directions.

Development of a Critical Pathway for Patients with Lumbar Laminectomy (요추척추궁 절제술 환자의 표준관리지침서 개발)

  • Park, Jae Jung;Park, Hyoung Sook
    • Korean Journal of Adult Nursing
    • /
    • v.12 no.4
    • /
    • pp.517-532
    • /
    • 2000
  • The purpose of this study was to develop a critical pathway for case management of patients who have received Lumbar Laminectomy because of low back pain, arm and leg numbness, and radiating pain in the leg. For this study, a preliminary critical pathway was developed through a review of the literature including five critical pathways which are currently being used in the USA. In order to identify the overall service contents required by these patients, 30 cases were analyzed. These cases were taken from medical records of those with Lumbar Laminectomy between January, 1998 and December, 1998 in the department of neurosurgery at the Pusan National University Hospital in Pusan. An expert validity test was done for the preliminary critical pathway, a clinical validity test was also done using 12 patients with Lumbar Laminectomy between October 1, 1999 and January 31, 2000. After these processes, the final critical pathway was developed. The results are summarized as follows. 1. The vertical axis of the critical pathway includes the following eight items: assessment, consultation, diet, test, medication, treatment, activity, education/ discharge planning. The horizontal axis includes the time from the start of hospitalization to discharge. Analysis of the 30 medical records was done. analysis of the service contents showed the horizontal axis of the preliminary critical pathway was set from hospitalization to the 12th post operation day and the vertical axis was set to include eight items, the contents which should have occurred, according to the time frames of the horizontal axis. 2. As a result of the expert validity test, it was found that among the 233 items, 203 showed over 88% agreement and 30 of them showed less than 88% agreement, which were then revised or deleted from the critical pathway. At the preliminary meeting for the clinical validity test, the time of hospitalization on the horizontal axis was shortened to the 10th post operation day. A clinical validity test was done with 12 patients with Lumbar Laminectomy. All the cases progressed according to the critical pathway although some variances were noted in assessment, consultation, test, medication, and treatment. 3. Based on these results, a final critical pathway was determined. In conclusion, this critical pathway is partially applicable to the care of patients with Lumbar Laminectomy and needs further investigation.

  • PDF

Critical Pathway of Home Healthcare for COPD clients (COPD 대상자의 가정간호를 위한 Critical pathway)

  • Cho, Won-Jung;Han, Mi-Kyung
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.2
    • /
    • pp.329-337
    • /
    • 2001
  • Purpose: This study was to develop a critical pathway for COPD clients in home health care. Method: Review of literature. Analysis of 10 cases of home health records of COPD clients without other major chronic illness, and Contents validity test Results 1. Vertical axis(l4 activities) physical and mental assessment, family assessment. environment assessment, rights and duties of client, oxygen use and safety, education of disease process and symptom, medication, nutrition and elimination, tests, activities, respiratory exercise, sleeping pattern. consultations and discharge planning. 2. Horizontal axis was set by the number of visits(average number of visits is 6.4) and vertical axis was set with 14 activities and the contents which should have occurred, according to the time frames of the horizontal axis. 3. According to the contents validity test, among the total of 234 items, 176 items showed over 83% agreement and 58 items showed less than 83% agreement. Those items with less than 83% agreements were either deleted or revised. Conclusion this critical pathway is applicable to the home health care of COPD clients to provide quality home nursing care services at lower cost.

  • PDF

Skeletal stability following mandibular advancement: is it influenced by the magnitude of advancement or changes of the mandibular plane angle?

  • Tabrizi, Reza;Nili, Mahsa;Aliabadi, Ehsan;Pourdanesh, Fereydoun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.3
    • /
    • pp.152-159
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of advancement magnitude and changes in mandibular plane angle on the stability of mandibular advancement. Materials and Methods: This retrospective cohort study evaluated the postoperative stability of mandibular advancement in class II skeletal subjects who underwent bilateral sagittal split osteotomy. Radiographs taken preoperatively, immediately postoperatively and 1 year postoperatively were traced and analyzed using linear and angular measurements. To determine horizontal and vertical relapse, an X-Y coordinate system was established in which the X-axis was constructed by rotating S-N downward by $7^{\circ}$ (approximation of the Frankfort horizontal plane) and the Y-axis was defined as a line perpendicular to the X-axis and passing through the point Sella. For certain reference points including point A, point B, pogonion and menton, the perpendicular distance between each point and both axes was determined and cephalometric variables were recorded as X and Y coordinates. Results: Twenty-five subjects were studied. A significant correlation between the amount of mandibular advancement and relapse in the B point (vertical and horizontal) and the pogonion point was observed (vertical and horizontal, P<0.001). Evaluation of data demonstrated a positive correlation between the mandibular plane angle (SN/ML) change and vertical relapse in the B point (P<0.05). A simple regression model demonstrated that 74% of horizontal relapse and 42.3% of vertical relapse in the B point was related to the amount of mandibular advancement. The receiver operating characteristic test showed that 8.5 mm mandibular advancement is related to a relapse rate of 1 mm or more in the pogonion, vertically or horizontally. Conclusion: The magnitude of mandibular advancement is a stronger surgical predictor for horizontal rather than vertical relapse at the B point. Changes in mandibular plane angle (SN/ML) during surgery affect vertical, but not horizontal relapse at the B point.