• Title/Summary/Keyword: Horizontal arching

Search Result 26, Processing Time 0.021 seconds

A Study on Earth Pressure in Unsymmetrical Narrow Backfill Space (비대칭 좁은 공간에서의 되메움 토압에 관한 연구)

  • 문창열
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.261-277
    • /
    • 1999
  • The horizontal and vertical earth pressures in backfill space which is narrowly excavated like ditch are affected by the share of ditch backfill space and the wall friction between excavated surface and backfill soil. In this paper, for the excavated surface the Handy's equation of a symmetric vertical case and the Kellogg's equation of a symmetric sloped one are modified to show the minor principal stress arch for the unsymmetrical excavated backfill space. Compared with the soil test box result, a similarity in magnitude and distribution of backfill earth pressure shows that the earth pressure has been observed. The backfill earth pressure in unsymmetrically sloped space has been shown twice as much as the one in vertically excavated space and also remarkable decline of arching for the former case. It is verified that the earth pressure equation should account the shape and size of backfill space to calculate the earth pressure for similar structure to the one handled in this study.

  • PDF

Lateral Earth Pressure with The Shape of Narrow Space with Backfill (좁은 공간의 형상에 따른 되메움 토압에 관한 연구)

  • Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.89-96
    • /
    • 2008
  • The study, with regard to unsymmetrically inclined backfilled wall, was intended to estimate the lateral earth pressure, develop the equation for lateral earth pressure and eventually identify the mutual behavior, based on the modified Kellogg theory, while changing the width between the walls, wall angle, relative density and wall friction angle. To verify the geostatic pressure obtained from the study, the results in the wake of 62 kinds of model tests performed were compared and evaluated with the behaviors based on theoretical equations. As a result, the wall inclination angle was found to be the factors affecting the earth pressure the most, when both walls were inclined unsymmetrically. And the narrower the backfill space and the larger the wall inclination angle to the horizontal level, the greater the effect of the wall friction. The equation considering the wall friction reaction indicated the value, which was closer to the actually-measured earth pressure, and when the width between the warts was narrow, the arching effect appeared to be great, thereby indicating the difference between the measured earth pressure, theoretically calculated earth pressure and the geostatic pressure proved to be insignificant.

Finite Element Analysis on the Behavior of Soyanggang Dam and its Comparison with Observed (소양강(昭陽江)댐의 거동(擧動)에 대한 유한요소해석(有限要素解析)과 실측치(實測値)와의 비교(比較))

  • Kim, Sang Kyu;Lim, Heui Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.141-150
    • /
    • 1987
  • The Soyanggang Dam completed in 1973 was well instrumented during construction period. The measured results for stresses and movements of the embankment have already been published elsewhere, but theoretical analyses have not been made until now. This study intends to analyze the stress and deformation behavior of the embankment numerically which have been subjected to the load of materials during construction and water load during impounding. The constitutive law used for the analyses is hyperbolic model developed by Duncan et al., and a nonlinear incremental finite element analysis simulating its contruction steps is. used in this study. Hyperbolic parameters for each Zone are estimated from literature. The results obtained from the theoretical analyses clearly show deformation characteristics and stress vectors in arbitrary section of the dam. The analytical results ate well agreed with the measured deformations at the maximum cross section, however, there are some discrepancy in horizontal movements and in stresses generated in the core zone. From the numerical analyses and its comparison with the measured values, it is charaterized that relatively large construction settlements occurred in core zone, overburden pressure in the core zone was considerably reduced by arching effect, and tension zones might occur near both abutments because of the large horizontal displacement.

  • PDF

Model Test for the Behavior of Retaining Walls Under Surcharge Load (상재하중을 받는 토류벽체의 거동에 관한 모형실험 연구)

  • Jung, On-Su;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.49-57
    • /
    • 2005
  • The purpose of this study is to closely examine the influence of the surcharge load applied to the retaining wall through some model tests, in which wall stiffness in each stage of excavation, horizontal displacement of the retaining wall and surface displacement of the backfill according to wall stiffness and ground conditions, and change and distribution of the earth pressure applied to it were measured and their values were produced, then these values were mutually compared with their theoretical values and their values after analysis of the data obtained at the field, and they were analytically studied, in order to closely examine the influence of the surcharge load applied to the retaining wall. Findings from this study are as follows: The shape of ground surface settlement curve on the model ground under surcharge load, different from the distribution curve of regular probabilities which is of a shape of ground surface settlement under no surcharge load, appears in that settlement in an arching shape shows where the center part of surcharge load shows the maximum settlement. In examining the maximum horizontal displacement with the surcharge load applied to each stage of excavation, it occured at the point of 0.8H(excavation depth) when finally excavated. Regarding the range in which the displacement of the retaining wall increases according to application of surcharge load, the increment of displacement showed till the point of depth which is of two times of the distance of load from the upper part of the wall. Also since each displacement of the foundation plate caused by the ground surface settlement according to each stage of excavation occured most significantly at the final stage. Also since regarding wall stiffness, the wall of its thickness of 4mm(flexible coefficient $p:480m^3/t$), produced maximum 3 times of wall stiffness than its thickness of 9mm(flexible coefficient $p: 40m^3/t$), it was found out that influence of wall stiffness is so significant.

A study on the characteristics of shallow overburden railway tunnel behavior under the existing road (기존도로하부 저토피 통과구간 철도터널 거동특성에 관한 연구)

  • Seo, Yoon-sic;Kim, Yeon-deok;Moon, Gyeong-seon;Kim, Hyeob;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1045-1058
    • /
    • 2017
  • This paper is a study on railway tunnel behavior characteristic of shallow overburden under the existing road. In order to understand the behavior characteristics of the ground deformation during tunnel excavation, a horizontal rod extensometers were installed in the passage area of the shallow overburden tunnel under the road, and the measurement and analysis were carried out. To compare the in situ measurement, three dimensional numerical analysis with ground condition and construction step was carried out using MIDAS NX. As a result of the field measurement, large preceding settlement occurred where the poor ground condition with shallow overburden excavation has been conducted. As a result of the numerical analysis, the largest settlement occurred at the shallow overburden point where the ground condition was poor. Therefore, in the shallow overburden section where the soil condition is poor and a sufficient depth can't be secured and the arching effect of the ground around the tunnel can't be expected, careful attention should be paid to the application of stiffness reinforcement measures and to minimize ground loosening.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.