• Title/Summary/Keyword: Horizontal Strength

Search Result 753, Processing Time 0.023 seconds

Corrosion Fatigue Characteristics of A106-GrB Steel Weldments in NaCl solution (A106 GrB강 용접부의 염수중 부식피로 특성)

  • 김철환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.143-149
    • /
    • 1997
  • the horizontal corrosion fatigue tester has been developed for investigating environmental strength. Using this tester, we investigated about corrosion fatigue caracteristic for A106 GrB steel weldments in 3.5% synthetic seawater and room temperature. Considered parameter is only frequency of 1,3 and 5Hz. and Corrosion fatigue crack length was measured by DC potential difference method. From the results, we could find that the horizontal corrosion fatiued tester could be well applied to estimation of fatigue strength. and In case of 5Hz, corrosion fatigue crack growth path of A106 GrB steel weldment was transgranular, and of 1 and 3Hz showed that transgranular and intergranular was mixed. Also, Corrosion fatigue crack growth caracteristic values estimated in each frequency were C=9.33 x 10-9 and m=2.93 in 1Hz, C=9.77x10-10 and m=3.47 in 3Hz, C=1.02x10-10 and m=4.05 in 1Hz

  • PDF

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Evaluation of Structural Performance of Joint in Precast Prefabricated Manhole (프리캐스트 조립식 맨홀 접합부의 구조성능 평가)

  • Chung, Chul-Hun;Song, Na-Young
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.48-61
    • /
    • 2011
  • In this study, static tests were done on the joints between precast manholes and the joints between manhole and sewer. The static loading tests in not only elastic range but also ultimate state of model members were carried out to investigate the bond strength and ultimate load of a joint of precast manholes. Specimens were tested in bending, horizontal shear, horizontal shear of circumferencial direction and direct tension. The results of tests indicated good structural performance of the joints between precast manholes and the joints between manhole and sewer.

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

An Experimental Study on the Seismic Performance of RC Piers using High-strength Concrete and High-strength Rebars (고강도콘크리트와 고강도철근을 사용한 교각의 내진거동 실험연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.712-715
    • /
    • 2004
  • Five RC piers were tested under a constant axial load and a cyclically reversed horizontal load to investigate the behavior of RC piers used in the high-strength concrete and the high-strength rebars. Seismic design of piers were conducted under the same design, according to the current Korean Bridge Design Standard. The parameters of the test were concrete compressive strength and steel strength, steel ratio. The test results indicated that RC piers of the high-strength concrete and high-strength rebars exhibited ductile behavior and seismic performance.

  • PDF

Ductility performance of hollow-section reinforced concrete piers using high-strength reinforcing bars (중공단면 고강도 철근 콘크리트 교각의 연성거동에 관한 실험적 연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • Three Hollow RC piers were tested under a constant axial load and a cyclically reversed horizontal loadto investigate the structural behavior of hollow RC piers using the high strength concrete and the high strength rebars. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

  • PDF

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Flexural Strength and Rotational Stiffness Estimation of Joint between Vertical and Horizontal Members in System Support (시스템 동바리 수직재와 수평재 연결부의 휨강도와 회전 강성 평가)

  • Won, Jeong-Hun;Lee, Hyung Do;Choi, Myeong-Ki;Park, Man Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.46-53
    • /
    • 2018
  • This study examined the maximum resistant moment and nonlinear rotational stiffness of wedge joint between the vertical and horizontal members of system supports. To examine the maximum resistant moment and propose the nonlinear rotation stiffness of wedge joint, 6 specimens were tested and additional 3 specimens, where the horizontal member was welded to the vertical member, were tested to compare the moment capacity of wedge joints. The average maximum moment in the tested wedge joint was 1.183 kNm which represented about 70 % of the maximum moment developed in the welded specimens. And, as simulating nonlinear rotational stiffness of the wedge joint, a tri-linear model was suggested. The rotational stiffness was estimated as 23.095 kNm/rad in first stage, 7.945 kNm/rad in second stage, and 3.073 kNm/rad in third stage. For the failure mode, the specimen with the wedge joint showed the failure of joint between vertical and horizontal members. However, the specimen with welded joint represented the yielding of horizontal members.

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.