• Title/Summary/Keyword: Hopping

Search Result 576, Processing Time 0.026 seconds

Measurement-based Channel Hopping Scheme against Jamming Attacks in IEEE 802.11 Wireless Networks (IEEE 802.11 무선랜 재밍 환경에서의 측정 기반 채널 도약 기법)

  • Jeong, Seung-Myeong;Jeung, Jae-Min;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.205-213
    • /
    • 2012
  • In this paper, we propose a new channel hopping scheme based on IEEE 802.11h as a good countermeasure against jamming attacks in IEEE 802.11 wireless networks. 802.11h Dynamic Frequency Selection (DFS) is a mechanism which enables hopping to a best channel with full channel measurement, not a randomly chosen channel, when the current link quality degradation occurs due to interferers such as military radars. However, under jammer attacks, this needs a time for full channel measurement before a new channel hopping and due to link disconnection during the time network performance degradation is inevitable. In contrast, our proposed schemes make an immediate response right after a jammer detection since every device is aware of next hopping channel in advance. To do this, a next hopping channel is announced by Beacon frames and the channel is selected by full channel measurement within Beacon intervals. Simulation results show that proposed scheme minimizes throughput degradation and keeps the advantages of DFS.

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

Dynamic Spectrum Sensing and Channel Access Mechanism in Frequency Hopping Based Cognitive Radio Ad-hoc Networks (주파수 홉핑 기반 인지무선 애드 혹 네트워크에서 동적 스펙트럼 센싱 및 채널 엑세스 방안)

  • Won, Jong-Min;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2305-2315
    • /
    • 2015
  • Frequency resource value is growing more and more with the development of the wireless communication. With the advent of the current information society comes a serious shortage of frequency resource, as the amount of supply is far from meeting its demands. Thus, cognitive radio (CR) technique is receiving more attention as a way to make use of the temporarily unoccupied frequency resource. In this paper we propose a novel out-of-band spectrum sensing and dynamic channel access scheme for frequency hopping-based cognitive radio ad-hoc networks. At the beginning of each current channel hopping time, member nodes perform spectrum sensing for the next hopping channel. Based on the proposed collision free primary detection notification, member nodes can determine whether they should execute a hopping time extension procedure of the current channel or not. When the primary detected hopping channel is re-idled, the hopping pattern recovery procedure is performed. In this paper we evaluated the performance of the proposed dynamic sensing and hopping channel extension mechanism for the various wireless network conditions. As a result, we show that the proposed method can increase channel utilization and provide reliable channel management operation.

Delay Determination for Cyclic Delay Diversity for Block-Hopping SC-FDMA Systems (블록호핑 SC-FDMA 시스템을 위한 순환지연 다이버시티의 지연값 결정)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.72-82
    • /
    • 2009
  • In OFDMA systems, cyclic delay diversity can improve the system performance due to diversity effects. However, applying cyclic delay diversity to block-hopping SC-FDMA systems can affect the performance in two contrary ways: positive effect due to increased frequency diversity and negative effect caused by increased frequency selectivity. Hence, the delay value for cyclic delay diversity should be carefully selected to maximize the system performance. This paper discusses these two contrary effects and proposes a method of determining the delay value of cyclic delay diversity for block-hopping SC-FDMA systems.

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

A Secure MQAM Scheme Based on Signal Constellation Hopping

  • Zhang, Yingxian;Liu, Aijun;Pan, Xiaofei;Ye, Zhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2246-2260
    • /
    • 2014
  • In this paper, a secure multilevel quadrature amplitude modulation (MQAM) scheme is proposed for the physical layer security (PLS) of the wireless communications. In the proposed scheme, each transmitted symbol's signal constellation (SC) is hopping with the control of two unique factors: amplitude distortion (AD) factor and phase hopping (PH) factor. With unknown the two factors, the eavesdropper cannot extract effective information from the received signal. We first introduce a security metric, referred to as secrecy gain, and drive a lower bound on the gain that the secrecy capacity can be improved. Then, we investigate the relationship among the secrecy gain, the signal to noise power ratios (SNRs) of the main and wiretap channels, and the secrecy capacity. Next, we analyze the security of the proposed scheme, and the results indicate that the secrecy capacity is improved by our scheme. Specifically, a positive secrecy capacity is always obtained, whether the quality of the main channel is better than that of the wiretap channel or not. Finally, the numerical results are provided to prove the analytical work, which further suggests the security of the proposed scheme.

Time Shifted Pilot Signal Transmission With Pilot Hopping To Improve The Uplink Performance of Massive MIMO System For Next Generation Network

  • Ruperee, Amrita;Nema, Shikha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4390-4407
    • /
    • 2019
  • The paucity of pilot signals in Massive MIMO system is a vital issue. To accommodate substantial number of users, pilot signals are reused. This leads to interference, resulting in pilot contamination and degrades channel estimation at the Base Station (BS). Hence, mitigation of pilot contamination is exigency in Massive MIMO system. The proposed Time Shifted Pilot Signal Transmission with Pilot signal Hopping (TSPTPH), addresses the pilot contamination issue by transmitting pilot signals in non-overlapping time interval with hopping of pilot signals in each transmission slot. Hopping is carried by switching user to new a pilot signal in each transmission slot, resulting in random change of interfering users. This contributes to the change in channel coefficient, which leads to improved channel estimation at the BS and therefore enhances the efficiency of Massive MIMO system. In this system, Uplink Signal Power to Interference plus Noise Power Ratio (SINR) and data-rate are calculated for pilot signal reuse factor 1 and 3, by estimating the channel with Least Square estimation. The proposed system also reduces the uplink Signal power for data transmission of each User Equipment for normalized spectral efficiency with rising number of antennas at the BS and thus improves battery life.

Biomimetic Hopping Strategy for Robots

  • Sung, S.H.;Youm, Y.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2654-2659
    • /
    • 2003
  • In this paper, we present biomimetic hopping strategy which is more human-like for legged robot through stiffness modulation. Stiffness value is calculated from the motion of body center of gravity. This method enable to reduce impact force on touch-down, adaption on ground stiffness change and height modulation. Simple selected models will be used to validate this method. For general model, singular perturbation is used for control and simulation using stiffness modulation is presented.

  • PDF

Design of Tracking Filter in using Frequency Hopping System for 231 - 292 MHz (231 - 292 MHz 대역 주파수도약용 Tracking Filter 의 설계)

  • 유정혁;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.409-412
    • /
    • 2001
  • In this paper, we designed Tracking Filter in using frequency hopping system, which can acquire hopping pattern in very short time and track it in the bandwidth of 231 MHz - 292 MHz. This is the RF filter with a high Q value and its center frequency is adjustable through digital signal.

  • PDF

A Study on the Hopping Conducting Mechanism in PAN Carbon Fiber (PAN계 탄소섬유의 Hopping 전도기구에 관한 연구)

  • Han, Se-Won;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.65-67
    • /
    • 1989
  • To study hopping conducting mechanism in PAN(polyacrylonitrile) carbon fiber, the temperature and frequency dependence of electrical conductivity and magnetoresistance characteristics were investigated. Electrical conductivity in the range of $60^{\circ}K-300^{\circ}K$ show VRH(variable range hopping) properties which introduced by Mott's theory, and also such properties can be explained by the frequency dependence of electrical conductivity below $5{\times}10^6$ Hz. The negative magnetoresistance observed below 35KG magnetic field, and the properties difference between M40 and T300 with increasing magnetic field is supposed due to on effect connected with crystalline state and orientation of structure.

  • PDF