• Title/Summary/Keyword: Hopf algebra of symmetric functions

Search Result 2, Processing Time 0.014 seconds

TOWARDS UNIQUENESS OF MPR, THE MALVENUTO-POITIER-REUTENAUER HOPF ALGEBRA OF PERMUTATIONS

  • Hazewinkel, Michiel
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.119-192
    • /
    • 2007
  • A very important Hopf algebra is the graded Hopf algebra Symm of symmetric functions. It can be characterized as the unique graded positive selfdual Hopf algebra with orthonormal graded distinguished basis and just one primitive element from the distinguished basis. This result is due to Andrei Zelevinsky. A noncommutative graded Hopf algebra of this type cannot exist. But there is a most important positive graded Hopf algebra with distinguished basis that is noncommutative and that is twisted selfdual, the Malvenuto-Poirier-Reutenauer Hopf algebra of permutations. Thus the question arises whether there is a corresponding uniqueness theorem for MPR. This prepreprint records initial investigations in this direction and proves that uniquenees holds up to and including the degree 4 which has rank 24.

A REMARK ON THE CONJUGATION IN THE STEENROD ALGEBRA

  • TURGAY, NESET DENIZ
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.269-276
    • /
    • 2015
  • We investigate the Hopf algebra conjugation, ${\chi}$, of the mod 2 Steenrod algebra, $\mathcal{A}_2$, in terms of the Hopf algebra conjugation, ${\chi}^{\prime}$, of the mod 2 Leibniz-Hopf algebra. We also investigate the fixed points of $\mathcal{A}_2$ under ${\chi}$ and their relationship to the invariants under ${\chi}^{\prime}$.