The proposed technique uses cyclic frame structure, where three periods such as beacon period (BP), mesh contention access period (MCAP) and slotted period (SP) are in a data frame. This paper studies on a mechanism to allow communication nodes (6lowpan) in a PAN with different logical channel for global healthcare applications monitoring technology. The proposed super framework structure system has installed 6lowpan sensor nodes to communicate with each other. The basic idea is to time share logical channels to perform 6lowpan sensor node. The concept of 6lowpan sensor node and various biomedical sensors fixed on the patient BAN (Body Area Network) for monitoring health condition. In PAN (hospital area), has fixed gateways that received biomedical data from 6lowpan (patient). Each 6lowpan sensor node (patient) has IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analyze patient data from all over the globe by the internet service provider, with specific equipments i.e. cell phone, PDA, note book. The NS-2.33 result shows the performance of data transmission delay and data delivery ratio in the case of hop count in a PAN (Personal Area Networks).
최근 인터넷 방송이나 VOD와 같은 대용량 데이터 서비스에 대한 이용이 보편화되면서 네트?의 트래픽이 급증하고 있다. 이에 따라 발생하는 서비스의 지연문제를 해결하기 위해 대역폭의 확장뿐 아니라 망의 확장성을 해결할 수 있는 방안들이 모색되고 있다. 이러한 방안의 하나로서 MPLS는 망의 확장성과 고속의 라우팅을 지원하는 장점이 있으나 모든 패킷은 입구 노드에서 출구 노드까지 LSP가 설정 되기 전까지 지연이 발생한다. 본 논문에서는 이러한 지연 문제를 해결하기 위해 데이터가 MPLS 도메인을 거쳐 가야 할 경우 입구노드에서 출구 노드까지의 홉수에 따라 서로 다른 레이블 할당 기법을 사용하는 방안을 제안한다. 또한 제안된 방안을 사용했을 경우 어느 정도의 지연 감소를 얻을 수 있는지를 보였다.
A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.
우주 비행체의 온보드(on-board) 데이터 처리를 위해 고안된 스페이스와이어(SpaceWire)에는 네트워크의 시각 동기화를 위한 타임코드(time-code)가 정의되어있다. 타임코드가 네트워크를 통하여 전송되는 과정에서 전송 지연 및 지터(jitter)가 발생하며 이것은 시각 동기화 오차의 주요 원인이 된다. 본 논문은 스페이스와이어 표준에 정의되어 있는 타임코드를 확장하여 스페이스와이어 네트워크의 시각 동기화 오차를 줄이는 방안을 제안한다. 제안된 방안은 타임코드의 전송 지터에 따른 오차를 제거하고 타임코드가 링크를 거칠 때마다 발생하는 전송 지연을 제거할 수 있다. 그리고 그 효과는 OMNeT++을 이용하여 개발된 스페이스와이어 네트워크 시뮬레이션 환경을 이용하여 검증한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.1849-1876
/
2022
Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.
Sensor network에서의 망동기화는 센서 노드들을 하나의 시각에 동기화시킴으로써, 센서 노들들이 수집해서 보내는 센서 정보들이 의미있는 정보들이 되도록 돕는 망의 기본적인 요소이다. 센서 노드들이 망동기화 되어 있지 않으면, 센서 노드돌이 보내오는 시각정보와 재난 감지 이벤트를 잘못 해석하여, 방향을 오판할 수 있고, 이를 통한 대응은 큰 재난으로 나타날 수도 있다. 배터리의 제약과 컴퓨팅 파워의 제약 등으로 인해 센서 노드에 들어가는 시각동기화 알고리즘은 복잡한 계산을 요구하지 않고, 많은 메시지를 발생시키지 않으면서 정확하게 동기화할 수 있어야 한다. 동기화의 오차를 줄이기 위해서는 동기화 할 센서노드와 동기화 정보를 제공하는 참조노드(reference node)와의 홉 수가 적어야 한다. 이를 위해 망 내에 하나의 참조노드만 사용하는 것이 아니라, 여러 개의 참조노드를 사용하게 되는데, 이는 참조노드들 사이의 동기화를 맞추어야 하는 문제를 낳는다. 지금까지 망동기화를 위한 여러 알고리즘들이 제안되어 왔지만, 참조노드들끼리의 동기화 문제가 잘 고려되지 못하였다. 본 논문에서는 다수의 참조노드를 갖는 Sensor network에서 센서 노드 자체의 동기 뿐 아니라, 참조노드들의 동기를 향상시켜 전체적인 망동기화를 개선시킬 수 있는 방안을 제시하였고, 이를 시뮬레이션을 통해 확인하였다.
논리망 구성, 파장할당, 그리고 트래픽 라우팅은 WDM 전송망 구성의 핵심적인 문제들이다. 망 전체 수준의 최적성을 위해서는 이 문제들을 통하여 접근할 필요성이 있으며, 최근 일련의 연구들은 이러한 통합 모형과 해법의 추구 과정으로 볼 수 있다. 그 중에서 Krishnaswamy와 Sivarajan이 제시한 모형은, 통합성과 완비성이 정도로 볼 때, 가장 개선된 것이다. 특히 이 수리모형은, 이전의 비선형모형에 비해, 상대적으로 해법이 용이한 정수선형계획모형이라는 장점을 가지고 있다. 그러나 이 연구는 , 정수조건을 완화한 선형계획문제를 푼 다음 라운딩(Rounding)에 의해 정수해를 구하는 해법을 제시하였다. 이러한 초보적인 해법은 라운딩이 성공적인 경우 최적 품질에 가까운 해를 생성하지만, 일반적으로 다음과 같은 문제들을 갖고 있다. 첫째, 대형 선형문제를 그대로 풂으로써, 매우 긴 계산시간을 요한다. 둘째, 구해진 해가 모형에 반영된 기술적 제약조건들을 만족시키지 못하는 비가능해(infeasible solution) 일 수 있다. 예를 들어 광신호의 감쇠현상을 방지하기 위한 흡(hop)수 제약조건이나, WDM의 필수적 제약인 파장개수의 상한 등이다. 본 연구는 [7]에서 제시한 수리모형에 기반하여, 개선된 해법을 제시하고자 한다. 즉, 훨씬 단축된 시간 안에 모든 제약 조건을 만족하는 해법을 제시한다. 또한, 품질 면에서도 [7]에 제시된 최적해와 대체로 비슷한 수준의 해를 제공할 수 있다.
유비쿼터스 센서 네트워크 (USN)의 노드에서 노드의 에너지가 한정되어 있기 때문에 센서 네트워크의 수명을 연장하기 위해서는 각 노드의 에너지 소모를 가능한 균일하게 하여야 한다. USN에서 라우팅 프로토콜로서 많이 도입이 되어 지고 있는 AODV는 각 노드의 잔여 배터리 전력량을 고려하지 않고 경로를 채택하므로 각 노드의 불균형적인 전력 소모 현상이 심각하게 발생한다. 본 논문에서는 AODV를 수정하여 각 센서 노드의 패킷 중계량에 따라 적응적으로 그 중계량을 제어하여, 특정 노드에 트래픽이 몰리는 것을 방지하고 전체 네트워크의 수명을 높일 수 있는 기법을 제안한다. 시뮬레이션을 통해 제안한 알고리즘을 센서 네트워크에 적용했을 때, 각 센서 노드의 패킷 중계량이 비슷하게 유지됨으로써 USN의 동작 수명을 높일 수 있음을 검증하였다.
멀티홉 무선네트워크에서 메시지 전송 경로는 경로 탐색 과정을 통해 설정하게 되는데 일반적으로 최단경로를 이용하게 된다. 그러나 이러한 경로는 네트워크 중앙부근의 노드들을 많이 이용하여 에너지 사용의 불균형 및 혼잡 발생 확률을 높여 메시지 전송 안정성을 떨어뜨리는 문제가 발생한다. 본 논문에서는 노드들의 잔여 에너지량을 고려하여 종단간 안정성 있는 메시지 전송 라우팅 프로토콜을 제안한다. 제안한 프로토콜은 링크성능평가척도로 ETX (Expected Transmission Count) 를 사용하며, 경로설정시 노드의 잔여 에너지량이 적은 노드들을 회피함으로써 경로 고장 확률을 줄이고 이로 인한 메시지 손실을 최소화하도록 하고 있다. 제안한 프로토콜의 성능을 평가하기 위해 QualNet 시뮬레이터를 이용하여 성능측정을 수행하였고, 이를 기존의 라우팅 프로토콜들과 비교하였다. 성능측정 결과 종단간 메시지 전송률 및 메시지 전송지연시간 등에 있어서 기존 신뢰성 보장 프로토콜인 MRFR 프로토콜과 유사하였지만 노드들의 부하균등성 측면에서 MRFR 프로토콜 보다 우수함을 보였다.
최근 기기간 통신에 따른 소규모 네트워크에 적합한 통신 방법들에 대한 관심이 급증하면서 수요가 증가하고 있다. 소규모 네트워크의 기본적 시스템은 TDMA(Time Division Multiple Access)방식이 사용될 수 있다. 하지만 TDMA는 동기화 방식이 복잡하고 추가 장비가 필요하며 비용적인 측면에서 비효율 적이다. 때문에 본 논문에서는 DESYNC(DESYNChronization)를 이용하여 소규모 네트워크에 적합한 동기화 방법을 제안한다. 기존 DESYNC는 동기화 완료까지의 시간이 걸리고 지연시간을 보장하지 않는다. 본 논문에서는 DESYNC 알고리즘을 개선하여 BC(Bridge Count)-DESYNC를 제안한다. BC-DESYNC는 통신 범위를 초과한 노드들 사이에 CU(Central Unit)을 배치하여 중앙제어장치 기능을 통해 노드들의 통신이 가능하도록 하며, Mimic DESYNC와 C-DESYNC를 이용하여 동기화 상태 완료 시간을 보장한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.