• Title/Summary/Keyword: Hoop

Search Result 342, Processing Time 0.021 seconds

Flexure-Shear Behavior of Circular Bridge Columns under Cyclic Lateral Loads (반복 횡하중을 받는 원형교각의 휨-전단 거동)

  • Lee Jae-Hoon;Ko Seong-Hyun;Lee Dae-Hyoung;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.823-832
    • /
    • 2004
  • The purpose of this research is to investigate the flexure-shear behavior of bridge columns under seismic loads. Four full scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. The selected test variables are aspect ratio(1.825, 2.5, 4.0), transverse steel configuration, and longitudinal steel ratio. Volumetric ratio of transverse hoop of all the columns is 0.0023 in the plastic hinge region. It corresponds to $24\%$ of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. The columns showed flexural failure or flexure-shear failure depending on the test variables. Failure behavior and seismic performance are investigated and discussed in this paper.

A Study on Underwear (Underwear에 관한 고찰)

  • 이순홍
    • Journal of the Korean Society of Costume
    • /
    • v.50
    • /
    • pp.129-144
    • /
    • 2000
  • In the history of the costume of Western Europe one of the most interesting apects is that the silhouette of women's dress has been continuously evolved. There can be various origins in this changing silhouette but the most important origin is that clothes of any period are the reflection of the architectural political religious and economic background against which they are worn they must also be djusted to the texture and design of the materials produced at the time and of course there is always the basic instinct of sex attraction. The changing line in men's and women's clothes has been demanded by each period but man's great active life did not required the development of exaggerated line which could restrict his movements. Exaggeration in men's clothes has usually been confined to accessories only details could be simplified or abandoned altogether in time of action. However Woman has no great concern in these restrivtions and when an era demanded an exaggerated silhouette she developed it to the utmost limit with out any hesitation plunged herself into whalebone cane and steel for the desired line and then later to adapt herself to a changing world just as without any hesitaion abandoned all these artificial props. In this study first of all the origin of the corset and the evolution of silhouette will be chronologically studied and rearranged on the basis of written materials such as text books theses and catalogs which are related to corset In this section the most important backgrounds-social religious and economic-which caused the chages of silhouette will be scrutinized in a time order. Then the shapes and functions of corsets will be looked into in a more detailed way. In addition the materials and decorations which were preferred to achieve the desired silhouette will be examined. Finally underwear which was and has been worn for cleanness protection the shapes of outer clothes and erotic mood will be studied.

  • PDF

A Study on the Strength Safety of a Composite Hydrogen Fuel Tank for a Vehicle (차량용 복합소재 수소연료탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the strength safety of a hydrogen gas composite fuel tank, which is analyzed using a FEM based on the criterion of US DOT-CFFC and Korean Standard. A hydrogen gas composite tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K is charged with a filling pressure of 70MPa and a gas storage capacity of 130 liter. The FEM results indicated that von Mises stress, 255.2MPa of an aluminum liner inner tank is low compared with that of 95% yield strength, 272MPa. And a carbon fiber stress ratio of a composite fuel tank is 3.11 in hoop direction and 3.04 in helical direction. These data indicate that a carbon fiber gas tank is safe in comparison to that of a recommended criterion of 2.4 stress ratio. Thus, the proposed composite tank with 130 liter capacity and 70MPa filling pressure is usable in strength safety.

Effect of virtual reality training using 3-dimensional video gaming technology on spatiotemporal gait parameters in older adults (삼차원 가상현실 운동 프로그램이 노인의 시공간적 보행변수에 미치는 효과)

  • Lee, Yongwoo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.1
    • /
    • pp.61-69
    • /
    • 2016
  • PURPOSE: This study was conducted to investigate the effect of the virtual reality training (VRT) using 3-dimensional video gaming technology on spatiotemporal gait parameters in older adults. METHODS: The study participants were divided into two groups: the VRT group and the control group. Those in the VRT group were enrolled in a VRT, which was conducted for 60 min per day, two times a week, during the 6-week research. The Wii-Fit balance board game was used for the VRT intervention. The VRT consisted of 6 different types of games, namely, jogging, swordplay, ski jump, hula hoop, tennis, and step dance. A 3-dimensional TV was used for 3-dimensional display. Participants in both the groups received 3 sessions of fall prevention education, at the first, third, and fifth weeks. Their gait parameters were measured by using OptoGait. RESULTS: After 6 weeks of the VRT, the spatial gait parameters of the participants, that is stride length and step length, were significantly improved compared with those of the control group participants (p<0.05). The temporal gait parameters, such as velocity, cadence, stride time, and step time, also showed improvement after the completion of the VRT training (p<0.05). Both the temporal and spatial gait parameters of the VRT group participants showed improvement after 6 weeks of the program compared with those of the control group participants (p<0.05). CONCLUSION: The VRT using 3-dimensional video gaming technology might be beneficial for improving gait parameters to prevent falls among older adults.

Study on the historical change of rocker style(1) - Theoretical background of rockers and the style of Windsor rockers and Boston rockers - (흔들의자의 양식 변천 연구(1) - 흔들의자의 이론적 배경과 윈저 Rocker 및 보스톤 Rocker의 양식 -)

  • Lim, Seung-Taeg;Chung, Woo-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2006
  • This study understands rockers of today and supplies basic data of design and manufacture studying pattern change of rockers arisen in West, there is the purpose. Also, this study is investigated by dividing theoretical background of rockers, 7 kinds of American traditional rockers and European rockers from 18th century to opening part of 20th century and contemporary rockers since 20th century. The theoretical background and the style of 2 rockers (Windsor rocker, Boston rocker) were investigated to study the stylistic changes of rockers. Originally a rocker was invented by a European farmer around 1700. It developed to a household which equip practicality and comfortablness in the United States than Europe. Early rockers in a primal form appeared in the 1740s in the United States. American early rockers connected skate to established chair bridge. Rockers are deep connection with family's emotion. Rockers can provide playing functions for children and medically treating functions for adults. Windsor Rockers developed by attaching skate is mammy bench and according to shape of back form bow or hoop-back rocker, birdcage rocker, comb-back rocker. Windsor Rockers formed peculiar American tradition of craftsman furniture through structure that have a unique back of a chair and round seat. Boston Rockers were the first chairs made by mass production method. They show a particular shape with S-curve style seat and rectangular crest at the upper part of the back. Often Crests were decorated by stenciled pattern with curled leaves such as rosettes and scrolled designs.

  • PDF

LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank (타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석)

  • Kang, Sang-Guk;Kim, Myung-Gon;Park, Sang-Wuk;Kong, Cheol-Won;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.592-600
    • /
    • 2007
  • Nowadays, researches for replacing material systems for cryotanks by composites have been being performed for the purpose of lightweight launch vehicle. In this paper, a type 3 propellant tank, which is composed of the composite developed for cryogenic use and an aluminum liner, was fabricated and tested considering actual operating environment, that is, cryogenic temperature and pressure. For this aim, liquid nitrogen (LN2) was injected into the fabricated tank and in turn, gaseous nitrogen (GN2) was used for pressurization. During this test procedure, strains and temperatures on the tank surface were measured. The delamination between hoop layer and helical one, was detected during the experiment. Several attempts were followed to investigate the cause analytically and experimentally. Thermo-elastic analysis in consideration of the progressive failure was done to evaluate the failure index. Experimental approach through a LN2 immersion test of composite/aluminum ring specimens suitable for simulating the Type 3 tank structure.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.

Solution for a semi-infinite plate with radial crack and radial crack emanating from circular hole under bi-axial loading by body force method

  • Manjunath, B.S.;Ramakrishna, D.S.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.177-187
    • /
    • 2009
  • Machine or structural members subjected to fatigue loading will have a crack initiated during early part of their life. Therefore analysis of members with cracks and other discontinuities is very important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be discretized it is easy versatile technique to analyze such problems. In the present work fundamental solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point $z_0=x_0+iy_0$ is considered. These fundamental solutions are in complex form ${\phi}(z)$ and ${\psi}(z)$ (England 1971). These potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces on a division, the resultant forces on the remaining 'N'divisions are to be found for which ${\phi}_1(z)$ and ${\psi}_1(z)$ are derived. Body force method is applied to calculate stress intensity factor for crack in semi-infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress, hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by body force method. These results are compared with FEM results.

The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel (HSA800 강재를 적용한 합성기둥의 축방향 내력 평가)

  • Lee, Myung Jae;Kim, Cheol Hwan;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.473-483
    • /
    • 2014
  • According to the Korean Building Code (KBC), the validity of the application of 800MPa grade steel(HSA800) to composite column should be verified by experimental or analytical method. Thus, stub column tests for encased and filled composite members with HSA800 steel were conducted, and axial strength and the validity of design compressive strength equations in KBC were evaluated. The test results show that the equation of the compressive strength of encased composite column member in KBC should be modified in order to use HSA800 steel without any reduction of specified minimum yield strength. For this purpose, it is suggested that the interval of hoop should be narrowed and the effective concrete area should be used. The equation of the compressive strength of filled composite column member in KBC is applicable to filled composite column with HSA800 steel without any modification.