• 제목/요약/키워드: Honeycomb glass

검색결과 43건 처리시간 0.025초

유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계 (High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb)

  • 유치상;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동 (Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure)

  • 김진우;원천;이동우;김병선;배성인;송정일
    • Composites Research
    • /
    • 제26권2호
    • /
    • pp.116-122
    • /
    • 2013
  • 본 연구는 동일한 코어재를 가지는 알루미늄과 유리섬유의 하니컴 샌드위치 판넬의 저속 충격시 발생하는 충격 거동 및 압축 실험을 통하여 압축 강도와 압축 계수를 살펴본다. 저속 충격을 받는 하니컴의 충격 거동을 살펴보기 위하여 중량 낙하식 충격 시험을 실시하며, 충격을 가한 후 데이터 분석 및 현미경을 통하여 전형적인 충격파손모드와 손상정도를 비교 평가하였다. 동일한 충격에너지일 때 유리섬유 하니컴 샌드위치 판넬이 알루미늄 하니컴 샌드위치 판넬보다 최대 하중이 높고, 탄성 에너지가 크며, 충격 강도가 높은 것을 확인할 수 있었다.

틸팅 열차용 허니콤 복합판재의 투과손실 (Transmission loss of Honeycomb Composite Panel of the Tilting Train)

  • 김석현;임봉기;김재철;장윤태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1088-1091
    • /
    • 2009
  • In a tilting train, aluminium honeycomb composite panel is used for the high speed and light weight. Side wall of the tilting train includes the composite panel of carbon fiber, aluminium honeycomb and epoxy fiber as a main structure. In this study, we measure the transmission loss (TL) of the honeycomb composite panel and analyse the sound insulation performance by using the orthotropic plate model. We investigate experimentally how the air gap, plywood and glass wool improve the sound insulation performance of the composite panel. The purpose of the study is to provide practical information for the improvement of TL of the honeycomb composite panel used for the tilting train.

  • PDF

충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구 (A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles)

  • 전광우;신광복;고희영;김대환
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

폐질환 조기 검출을 위한 결합 히스토그램 기반의 통계적 특징 인자에 대한 연구 (Study of Joint Histogram Based Statistical Features for Early Detection of Lung Disease)

  • 원철호
    • 재활복지공학회논문지
    • /
    • 제10권4호
    • /
    • pp.259-265
    • /
    • 2016
  • 본 논문에서는 폐질환 조기 검출을 위하여 Broncho vascular, Emphysema, Ground Glass Reticular, Ground Glass, Honeycomb, Normal의 6가지 폐조직에 대한 새로운 분류기법을 제안하였다. 단순 베이즈 분류기와 아다부스트 학습 기법을 도입하여 459개의 결합 히스토그램 특징인자로부터 유효한 특징인자를 선별함으로써 폐조직을 분류하였다. 다중 해상도 해석, 체적 LBP 및 CT 휘도를 기반으로 하는 결합 히스토그램 특징인자는 정확도, 민감도, 특이도 결과에서 기존의 3D AMFM보다 우수한 결과를 보였다. 제안한 특징인자와 3D AMFM 특징인자의 정확도는 각각 90.1%과 85.3%로서 제안한 특징인자의 우수한 분류 성능을 확인하였다.

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권4호
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.

틸팅 열차용 허니콤 복합 적층재의 차음성능 (Sound Insulation Performance of Honeycomb Composite Panel for a Tilting Train)

  • 김석현;서태건
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1931-1936
    • /
    • 2010
  • 한국형 틸팅열차에는 고속화와 경량화를 위하여 허니콤 복합재가 처음으로 사용된다. 틸팅열차의 측벽은 탄소섬유강화 에폭시층과 접착된 알미늄 허니콤 및 노멕스 허니콤 판재를 주 요소로, 유리면이 적층된 복합 적층재이다. 본 연구에서는 ASTM E2249-02에 근거하여 알미늄 및 노멕스 허니콤 복합 적층재의 층별 인텐시티 투과손실을 측정한다. 질량법칙편차를 이용하여 허니콤 복합재의 중량 대비 차음 성능을 평가하고, 차음 측면에서 알미늄 허니콤 복합재가 기존의 주름강판을 대체할 수 있는지의 가능성을 검토한다. 본 연구를 통하여 얻은 허니콤 복합 적층재의 차음성능 자료는 향후 틸팅 열차의 실내 소음 대책 수립에 활용될 것이다.