• Title/Summary/Keyword: Honeybees

Search Result 59, Processing Time 0.026 seconds

Development of an Acetylcholinesterase-Based Detection Kit for the Determination of Organophosphorus and Carbamate Pesticide Residues in Agricultural Samples

  • Kim, Bo-Mee;El-Aty, A.M.Abd;Hwang, Tay-Eak;Jin, Li-Tai;Kim, Young-Sig;Shim, Jae-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.929-935
    • /
    • 2007
  • The objective of this study was to develop a rapid, simple, and qualitative acetylcholinesterase (AChE)- detection kit, based on a modification of the Ellman and ELISA methods, for the detection of organophosphorus (OP) and carbamate (CB) pesticide. The developed kits were used to screen a large number of agricultural samples (spiked and real) for OP and CB pesticide residues. AChE was extracted from the heads of honeybees (Apis mellifera L.) using Triton X-100, and was purified through 3 steps: diethylaminoethylcellulose chromatography (DEAE), affinity chromatography and membrane filtering, and Mono-Q column chromatography. Epoxy-activated Sepharose 6B affinity chromatography was used for large-scale purification. The presence of OP and CB pesticide residues in agricultural samples was assayed on the basis of AchE inhibition value. The presence (6 bands) or absence of some colored bands on the test line indicated a negative or positive result, respectively. The limits of detection for measured organophosphorus (OP) and carbamates (CB) pesticide residues in standard pesticide solutions and fortified samples were ranged from 0.50 to 2.50 ppm and 0.50 to 4.75 ppm, respectively.

Effect of Bee Venom on Glutamate-mediated Excitotoxicity in NSC-34 Motor Neuronal Cells (Glutamate 매개 흥분성 신경독성에 대한 봉독의 NSC-34 신경세포사멸 억제 효과)

  • Lee, Sang-Min;Choi, Sun-Mi;Jung, So-Young;Yang, Eun-Jin
    • YAKHAK HOEJI
    • /
    • v.55 no.5
    • /
    • pp.385-390
    • /
    • 2011
  • Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investigate the effect of BV on glutamate-induced neurotoxicity on NSC-34 motor neuron cells. To determine the viability of motor neuronal cells, we performed with MTT assays in glutamate-treated NSC-34 cell with BV or without. For the measurement of oxidative stress, DCF assay was used in glutamate-treated NSC-34 motor neuronal cells with BV or without. To investigate the molecular mechanism of BV against glutamate-mediated neurotoxicity in NSC-34 cells, western blot analysis was used. Glutamate significantly decreased cell viability by glutamate dose- or treatment time-dependent manner in NSC-34 cells. However, BV pre-treatment dramatically inhibited glutamate-induced neuronal cell death. Furthermore, we found that BV increased the expression of Bcl-2 protein that is anti-apoptotic protein and reduced the generation of oxidative stress. BV has a neuroprotective role against glutamate neurotoxicity by an increase of anti-apoptotic protein. It suggests that BV may be useful for the reduction of neuronal cell death in neuronal disease models.

Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray. (프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과)

  • Ji, Tae-Jung;Kim, Jong-Sik;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.664-670
    • /
    • 2007
  • The propolis is natural product produced by honeybees and is known to have many biologically useful properties such as anti-microbial, anti-oxidative and anti-tumorigenic activity. However, its radio-protective property has not been well studied. To investigate radio-protective effect of propolis on mouse testis, mice were supplemented with propolis after 5 Gy irradiation. The histological changes of testis were detected by TEM. The results indicate that propolis may protect tissue deformation which is induced by 5 Gy of ionizing radiation. Furthermore, to elucidate the potential molecular mechanisms involved in radio-protective property of propolis, we performed microarray experiments using oligo DNA microarray. We found 65 up-regulated genes and 224 down-regulated genes, whose expression levels were affected more than 2-fold by propolis treatment in mice irradiated at 5 Gy. We confirmed microarray data with reverse transcription-PCR using gene specific primers. The results of RT-PCR are highly correlated with those of microarray. These results may help understanding molecular mechanisms of radioprotective effects by propolis in mouse model.

Early Alert System of Vespa Attack to Honeybee Hive: Prototype Design and Testing in the Laboratory Condition (장수말벌 공격 조기 경보 시스템 프로토타입 설계 및 실내 시연)

  • Kim, Byungsoon;Jeong, Seongmin;Kim, Goeun;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Vespa hornets are notorious predators of honeybees in Korean beekeeping. Detection of vespa hornet attacking on honeybee colony was tried through analysis of wing beat frequency profiling from Vespa mandarinia. Wing beat profiles of V. mandarinia during active flight and resting were distinctively different. From the wing beat profiling, algorithm of automated detection of vespa attack was encoded, and alert system was developed using Teensy 3.2 and Raspberry pi 3. From the laboratory testing, the prototype system successfully detected vespa wing beats and delivered the vespa attack information to the user wirelessly. Further development of the system could help precision alert system of the vespa attack to apiary.

Quantitative Detection of Tropilaelaps in Hive by Specific Gene Detection from Hive Debris (봉변에서 특이 유전자 검출법에 의한 봉군 내 꿀벌가시응애류 (Tropilaelaps)의 정량적 검출)

  • Kim, Byounghee;Kim, Somin;Kim, Moonjung;Kim, Jungmin;Truong, A Tai;Kim, Seonmi;Yoon, Byoungsu
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.27-37
    • /
    • 2019
  • Rapid detection of Tropilaelaps, an external parasite of honeybees that lead to malformation of honeybee or colony collapse disorder, is becoming important. But it is very difficult to find with the naked eye of Tropilaelaps. In this study, we have developed a method to detect the specific gene of Tropilaelaps from the hive debris and to know the number of Tropilaelaps in the hive through Tropilaelaps-specific quantitative detection. Tropilaelaps-specific gene amplified in DNA extracted from hive debris by consecutive PCR (1st detection, 2nd nested PCR). It could detect 101 molecules level of Tropilaelaps-specific gene and confirm the amplification of the Tropilaelaps-specific gene. It was possible to accurately quantify the number of Tropilaelaps from the hive debris sample, which is difficult to discriminate the presence of Tropilaelaps visually, through Tropilaelaps-specific detection. Under the microscope, Tropilaelaps was collected and quantitative detection of Tropilaelaps-specific genes was performed. It was possible to quantify the number of Tropilaelaps present in the hive through the molecules of the quantified Tropilaelaps-specific genes. We suggest that hive debris can represent as a micro-environment to hive and show that it can be a simpler and more accurate sample than using a parasitic host honeybee. We expect that hive debris should facilitate the monitoring of Tropilaelaps in hive.

Development of Diagnostic System to Black Queen Cell Virus(BQCV) Using Multi-point Detection (Multi-point PCR법을 이용한 Black Queen Cell Virus (BQCV) 검출법 개발)

  • Kim, Somin;Kim, Byounghee;Kim, Moonjung;Kim, Jungmin;Truong, A Tai;Kim, Seonmi;Yoon, Byoungsu
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • BQCV multi-point PCR was developed as a rapid multiplex detection method for BQCV, one of the viral pathogens of honeybees. It could detect BQCV specific genes qualitative as well as quantitative detection based on ultra-rapid PCR. Three primer pairs (RNA dependent RNA polymerase, capsid protein, 3C like protease) were specifically designed for accurate the detection and were optimized for minimizing the detection time and increasing the sensitivity. Our advanced diagnostic system have the accuracy by lowering the concern about the variation in the BQCV detection site. In addition, it should be an opportunity to identify mutations that are mixed with other viruses.

Drying Techniques and Nutritional Composition of Drone Pupae (Apis mellifera L.) as Edible Food

  • Choi, Hong Min;Kim, Hyo-Young;Woo, Soon Ok;Kim, Se Gun;Bang, Kyeong Won;Moon, Hyo Jung;Han, Sang Mi
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • There is an urgent need for novel protein sources as an alternative to meat production. Insects, such as honeybees, hold potential as a safe, nutritious and reliable protein source for the future. In the present study, we established optimal powder preprocessing conditions of drone pupae (Apis mellifera L.) for use as a novel food. The content of moisture, crude protein, crude fat, crude ash, carbohydrate and crude fiber in drone pupae(Apis mellifera L.) were analyzed. The crude protein content ranged from 48.5 to 51.8% was found in both freeze-dried and hot-air powdered drone pupae. However, the protein content in the freeze-dried powder was higher than that in the hot-air powder by 3.3%. According to the Korean Food Standard Codex test method, coliforms, Salmonella spp. Staphylcoccus aureus, and Enterohamorrhagice Escherichia coli were not detected in both freeze-dried and hot-air powder. Therefore, we suggest that the high protein content of the powdered drone pupae prepared in this study can serve as a novel food.

Utilization of Bombus terrestris as a Sweet Cherry Pollinator in Rain-sheltered Growing (생식용 체리 비가림 재배시 서양뒤영벌(Bombus terrestris L.)의 화분매개 곤충 활용)

  • Kwack, Yong-Bum;Kim, Hong-Lim;Choi, Young Hah;Lee, Jae Han
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.294-298
    • /
    • 2012
  • In sweet cherry (Prunus avium L.) growing there are several severe problem which have to be overcome to produce highly graded fruits because of fruit rots and fruit crackings, if there is frequent precipitation during immature fruit step and picking season. In order to reduce fungicide sprayings and produce qualified fruits in areas with rainy season like as South Korea, rain-sheltered growing is necessary absolutely. Sweet cherry blooms early to medium April in southern area of South Korea. If we depend on honeybees (Apis mellifera) distributed in natural ecosystem, it is not easy to get normal fruit-set every season because of low temperature around blooming time. And also bee keepers seldom sell honeybee hives as a pollinator during spring, instead they keep honeybee hives to get honey. Recently use of B. terrestris as a pollinator of cherry tomato, oriental pumpkin etc. grown in protected cultivation system increase abundantly. Therefore, in this study we studied B. terrestris as an alternate of honeybee to pollinate sweet cherry grown in rain shelter. In part of foraging activity B. terrestris shows staying on a cherry flower for about six second and visiting frequency of 11 flowers per minute. However A. mellifera stayed about 15 second on a flower and visited 4~5 flowers per minute. There were no significant difference in fruit-setting rate and fruit characteristics after using B. terrestris and A. mellifera as pollinators of sweet cherry. Consequently there is no negative effect when we use B. terrestris as an alternate pollinator of A. mellifera in sweet cherry cultivation under rain shelter.

Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee (꿀벌 Apis mellifera에서 유래 한 특성화 되지 않은 항균성 펩티드의 동정)

  • Park, Hee Geun;Kim, Dong Won;Lee, Man-Young;Choi, Yong Soo
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2020
  • The European honeybee (Apis mellifera L.) has multiple anti-microbial peptides, but many were unknown and demands for their characterization have increased. This study therefore focused on identifying novel anti-microbial peptides (AMPs) from A. mellifera L. To obtain high-throughput transcriptome data of the honeybee, we implemented next-generation sequencing (NGS), isolating novel AMPs from total RNA, and generated 15,314 peptide sequences, including 44 known, using Illumina HiSeq 2500 technology. The uncharacterized peptides were identified based on specific features of possible AMPs predicted in the sequencing analysis. AMP5, one such uncharacterized peptide, was expressed in the epidermis, body fat, and venom gland of the honeybee. We chemically synthesized this peptide and tested its anti-bacterial activity against Gram-negative Escherichia coli (KACC 10005) and Gram-positive Bacillus thuringiensis (KACC 10168) by anti-microbial assay. AMP5 exhibited anti-bacterial activity against E. coli (MIC50=22.04±0.66 μM) but not against B. thuringiensis. When worker bees were injected with E. coli, AMP5 was up-regulated in the body fat. This study therefore identified AMP5 in adult European honeybees and confirmed its anti-bacterial activity against Gram-negative E. coli.

A Study on the Enzyme Activities of a Honeybee(Apis cerana F.) Associated with the Degradation of Some Insecticides. (살충제분해에 관여하는 동양종(東洋種)꿀벌의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Suh, Yong-Tack;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 1989
  • This study was conducted to investigate insecticide toxicities to a honeybee, Apis cerana F. being raised in Korea and its detoxifying enzyme activities. In order to determine the appropriate usage of insecticides, median effective dose and detoxifying enzyme activities to seven insecticides were observed. Various detoxifying enzymes, including microsomal oxidases, glutathione S-transferases, esterases, and DDT-dehydrochlorinase were assayed in the midguts of adult worker bees as the enzyme source. Of the insecticides used, $LC_{50}$ value in DDT treatment was the highest as 19ppm, and that in EPN treatment was the lowest as 0.75ppm. Sublethal exposures of honeybees to various insecticides had some effects on microsomal enzyme activities. Aldrin epoxidase activity was inhibited by malathion and demeton S-methyl treatment. N-demethylase activity was induced by carbaryl treatment. Of the glutathione S-transferases, aryltransferase(DCNB conjugation) activity was significantly induced by diazinon, and moderately induced by malathion. Of the esterases, ${\alpha}-NA$ esterase activity was moderately inhibited by malathion and permethrin. Carboxylesterase and acetylcholinesterase activity were not affected by the sublethal exposure of honeybee to the insecticides. Sublethal exposure of honeybee to the insecticides had no effect on DDT- dehydrochlorinase activity, except carbaryl, malathion and demeton S-methyl were inhibited.

  • PDF