• Title/Summary/Keyword: Homotopy

Search Result 202, Processing Time 0.024 seconds

REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.101-118
    • /
    • 2007
  • The notions of digital k-homotopy equivalence and digital ($k_0,k_1$)-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in $\mathbf{Z}^2$.

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

  • Jeong, Myung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • For a based, 1-connected, finite CW-complex X, we denote by $\varepsilon(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\varepsilon_#\;^{dim+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq$ dim X+r. In this paper, we calculate the subgroups $\varepsilon_#\;^{dim+r}(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

GOTTLIEB GROUPS AND SUBGROUPS OF THE GROUP OF SELF-HOMOTOPY EQUIVALENCES

  • Kim, Jae-Ryong;Oda, Nobuyuki;Pan, Jianzhong;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1047-1063
    • /
    • 2006
  • Let $\varepsilon_#(X)$ be the subgroups of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix homotopy groups through the dimension of X and $\varepsilon_*(X) $ be the subgroup of $\varepsilon(X)$ that fix homology groups for all dimension. In this paper, we establish some connections between the homotopy group of X and the subgroup $\varepsilon_#(X)\cap\varepsilon_*(X)\;of\;\varepsilon(X)$. We also give some relations between $\pi_n(W)$, as well as a generalized Gottlieb group $G_n^f(W,X)$, and a subset $M_{#N}^f(X,W)$ of [X, W]. Finally we establish a connection between the coGottlieb group of X and the subgroup of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix cohomology groups.

POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.393-401
    • /
    • 2004
  • In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X$\sub$n/ of a CW-complex X, the group \ulcorner(X$\sub$n/, A) of self pair homotopy equivalences on the pair (X$\sub$n/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K($\pi$, n), M($\pi$, n)) ≡ \ulcorner(M($\pi$, n)) for each n$\pi$1, where K($\pi$,n) is an Eilenberg-Mclane space and M($\pi$,n) is a Moore space.

HOMOTOPY FIXED POINT SET OF THE HOMOTOPY FIBRE

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.755-762
    • /
    • 1999
  • Let X be a p-compace groyp, Y -> X bd a p-compact-subgroup of X and G -> X be a p-compact toral subgroup of X with $(X/Y)^{hG} \neq 0$. In this paper we show that the homotopy fixed point set of the homotopy fibre $(X/Y)^{hG}$ is $F_p$-finite.

  • PDF

A sequence of homotopy subgroups of a CW-pair

  • Woo, Moo-Ha
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.235-244
    • /
    • 1996
  • For a self-map f of a CW-pair (X, A), we introduce the G(f)-sequence of (X, A) which consists of subgroups of homotopy groups in the homotopy sequence of (X, A) and show some properties of the relative homotopy Jian groups. We also show a condition for the G(f)-sequence to be exact.

  • PDF

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang;Kumar, Devendra;Singh, Jagdev;Swroop, Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1209-1229
    • /
    • 2017
  • We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

SELF-HOMOTOPY EQUIVALENCES RELATED TO COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.399-415
    • /
    • 2017
  • Given a topological space X and a non-negative integer k, we study the self-homotopy equivalences of X that do not change maps from X to n-sphere $S^n$ homotopically by the composition for all $n{\geq}k$. We denote by ${\varepsilon}^{\sharp}_k(X)$ the set of all homotopy classes of such self-homotopy equivalences. This set is a dual concept of ${\varepsilon}^{\sharp}_k(X)$, which has been studied by several authors. We prove that if X is a finite CW complex, there are at most a finite number of distinguishing homotopy classes ${\varepsilon}^{\sharp}_k(X)$, whereas ${\varepsilon}^{\sharp}_k(X)$ may not be finite. Moreover, we obtain concrete computations of ${\varepsilon}^{\sharp}_k(X)$ to show that the cardinal of ${\varepsilon}^{\sharp}_k(X)$ is finite when X is either a Moore space or co-Moore space by using the self-closeness numbers.