• Title/Summary/Keyword: Homology Model

Search Result 101, Processing Time 0.024 seconds

Cloning and Expression of Alginate Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양미생물 Streptomyces sp. M3로부터 alginate lyase의 클로닝 및 발현)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1522-1528
    • /
    • 2009
  • A marine bacterium was isolated from brown seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence revealed that the strain belongs to Streptomyces like strain ALG-5 which was reported previously. New alginate lyase gene of Streptomyces sp. M3 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. The consensus sequences of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the M3 alginate lyase amino acid sequences. The homology model for the M3 alginate lyase showed a characteristic structure of $\beta$-jelly roll fold main domain like alyPG from Corynebacterium sp. ALY-1. The homogenate of the recombinant E. coli with the alginate lyase gene showed more degrading activity for polyguluronate block than polymannuronate block. The results from the multiple alignments and the homology modeling elucidated in the M3 alginate lyase can be classified into family PL-7.

Homology Modeling and In Vitro Analysis for Characterization of Streptomyces peucetius CYP157C4

  • Rimal, Hemraj;Yu, Sang-Cheol;Jang, Jong Hwa;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1417-1424
    • /
    • 2015
  • In this study, we tried to characterize Streptomyces peucetius CYP157C4 with homology modeling using three cytochrome P450 (CYP) structures (CYP157C1, CYP164A2, and CYP107L1), having discovered that CYP157C4 lacks the ExxR motif that was considered invariant in all CYPs. We used Discovery Studio 3.5 to build our model after first assessing the stereochemical quality and side-chain environment, and a 7-ethoxycoumarin substrate was docked into the final model. The model-substrate complex allowed us to identify functionally important residues and validate the active-site architecture. We found a distance of 4.56 Å between the 7-ethoxycoumarin and the active site of the heme, and cloning and an in vitro assay of the CYP157C4 showed the dealkylation of the substrate. Since the details regarding this group of CYP structures are still unknown, the findings of this study may provide elucidation to assist with future efforts to find a legitimate substrate.

BioCovi: A Visualization Service for Comparative Genomics Analysis

  • Lee, Jungsul;Park, Daeui;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.52-54
    • /
    • 2005
  • Visualization of the homology information is an important method to analyze the evolutionary and functional meanings of genes. With a database containing model genomes of Homo sapiens, Mus muculus, and Rattus norvegicus, we constructed a web­based comparative analysis tool, BioCovi, to visualize the homology information of mammalian sequences on a very large scale. The user interface has several features: it marks regions whose identity is greater than that specified, it shows or hides gaps from the result of global sequence alignment, and it inverts the graph when total identity is higher than the threshold specified.

Interactions of Tricyclic Isoxazole Analogues with ${\alpha}_{2c}$-Adrenoceptor by Homology Modeling (상동성 모델링을 이용한 Tricyclic Isoxazole 유도체와 ${\alpha}_{2c}$-Adrenoceptor의 상호작용)

  • Choi, Kyoung-Seob;Kang, Na-Na;Myung, Pyung-Keun;Sung, Nack-Do
    • YAKHAK HOEJI
    • /
    • v.54 no.4
    • /
    • pp.300-308
    • /
    • 2010
  • Adrenoceptor has been considered to be an important target in psychiatric disorders. Based on x-ray structures of bovine rhodopsin, we established homology model of ${\alpha}_{2c}$-adrenoceptor (ADA2C_rat) and then analyzed docking from binding model of receptor-ligand complex with high-active compound No.29 in tricyclic isoxazole analogues (1-30). We observed that the N (1.907 $\AA$) and O (1.712 $\AA$) atoms of isoxazole ring on the docked ligand (No.29) formed H-bonding interaction with O-H of Ser5.32 and carmeron phenyl ring centroid of tricyclic isoxazole formed $\pi-\pi$ interaction at 3.342 $\AA$ distance with phenyl ring centroid of Phe6.52. According to predictions of blood-brain distribution (logBB) through penetration of blood-brain barrie (BBB) and polar surface area (PSA) of the ligands, the high-active compound No.29 has values of logBB=-0.203, PSA=67.50, respectively. These results suggest that the high-active compound No.29 is a novel anti-depressant with the characteristics such as dopamine and serotonin.

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases

  • M, Shalini;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.164-175
    • /
    • 2015
  • CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.

3D Structure Prediction of Thromboxane A2 Receptor by Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.75-79
    • /
    • 2015
  • Thromboxane A2 receptors (TXA2-R) are the G protein coupled receptors localized on cell membranes and intracellular structures and play pathophysiological role in various thrombosis/hemostasis, modulation of the immune response, acute myocardial infarction, inflammatory lung disease, hypertension and nephrotic disease. TXA2 receptor antagonists have been evaluated as potential therapeutic agents for asthma, thrombosis and hypertension. The role of TXA2 in wide spectrum of diseases makes this as an important drug target. Hence in the present study, homology modeling of TXA2 receptor was performed using the crystal structure of squid rhodopsin and night blindness causing G90D rhodopsin. 20 models were generated using single and multiple templates based approaches and the best model was selected based on the validation result. We found that multiple template based approach have given better accuracy. The generated structures can be used in future for further binding site and docking analysis.

Theoretical Structure Prediction of Bradykinin Receptor B2 Using Comparative Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.234-240
    • /
    • 2016
  • Bradykinin receptor B2, a GPCR protein, binds with the inflammatory mediator hormone bradkynin. It plays an important role in cross-talk between the renin-angiotensin system (RAS) and the kinin-kallikrein system (KKS). Also, it is involved in many processes including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. Hence, studuying the structural features of the receptor becomes important. But the unavailability of the three dimensional structure of the protein makes the analysis difficult. Hence we have performed the homology modelling of Bradykinin receptor B2 with 5 different templates. 25 different homology models were constructed. Two best models were selected based on the model validation. The developed models could be helpful in analysing the structural features of Bradykinin receptor B2 and in pathophysiology of various disorders related to them.

Three Dimensional Structure Prediction of Neuromedin U Receptor 1 Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • Neuromedin U receptor 1 is a GPCR protein which binds with the neuropeptide, neuromedin. It is involved in the regulation of feeding and energy homeostasis and related with immune mediated inflammatory diseases like asthma. It plays an important role in maintaining the biological clock and in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract. Analysing the structural features of the receptor is crucial in studying the pathophysiology of the diseases related to the receptor important. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor using 5 different templates. The models were subjected to model validation and two models were selected as optimal. These models could be helpful in analysing the structural features of neuromedin U receptor 1 and their role in disorders related to them.

Analysis of the Structure-stability Relationship of Cold-adapted Lipase PsLip1 from Homology Modeling

  • Choo, Dong-Won
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • Two initial models of cold-adapted lipase PsLip1 have been constructed, based on homology with the bacterial lipases Chromobacterium viscosum (CvLip) and Pseudomonas cepacia (PcLip), whose X-ray structures have been solved and refined to high resolution. The mature polypeptide chains of these lipases have 84% similarity. The models of Mod1 and Mod2 have been compared with the tertiary structures of CvLip and PcLip, respectively, and analyzed in terms of stabilizing interactions. Several structural aspects that are believed to contribute to protein stability have been compared: the number of conserved salt bridges, aromatic interactions, hydrogen bonds, helix capping, and disulfide bridges. The 3-dimensional structural model of PsLip1 has been constructed in order to elucidate the structural reasons for the decreased thermostability of the enzyme in comparison with its mesophilic counterparts.

Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase

  • Kim, Mi Kyoung;Hwang, Won Chan;Min, Do Sik
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.112-117
    • /
    • 2021
  • Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.