• 제목/요약/키워드: Homogeneous-charge

검색결과 164건 처리시간 0.021초

연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구 (An Experimental Study on the Two Stage-Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition)

  • 김형민;류재덕;이기형;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.13-19
    • /
    • 2003
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthen. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct inject type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

  • PDF

HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향 (Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine)

  • 남승만;이계복
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.399-405
    • /
    • 2013
  • 엔진 실린더 내부의 난류유동 특성은 내연기관의 열효율을 결정하는 매우 중요한 역할을 한다. 실린더 내 난류유동은 복잡한 3차원 유동으로 유동특성에 대한 자세한 정보는 엔진설계의 최적화를 위해 필수적이다. 균일 예혼합 압축착화(HCCI) 엔진은 가솔린과 디젤엔진 사이의 하이브리드 연소개념이다. 실린더 내 기체의 난류유동은 운동량과 열의 혼합 및 전달률을 증가시키므로 벽면에서의 열전달에 관여하여 HCCI 연소 과정에 중요한 영향을 미치게 된다. 본 연구에서는 연소실 형상에 따른 연소실 내의 기체 난류유동을 LES 모델을 사용한 전산수치해석을 통해 분석하여 HCCI 엔진 연소과정에 미치는 영향을 확인하였고 연구결과는 HCCI 엔진에서 연소실 형상에 따른 연소 특성과 엔진 성능을 개선하기 위한 기본적인 지침에 활용될 수 있다.

LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성 (Emissions and Combustion Characteristics of LPG HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성 (Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향 (The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics)

  • 강정호;이성만;정재우;강우
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

압축착화 엔진에서 DME-가솔린 혼소 운전 특성에 관한 연구 (Operating Characteristics of Dual-fuel Combustion with DME and Gasoline in a Compression Ignition Engine)

  • 김기현;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.157-164
    • /
    • 2014
  • Dual fuel combustion strategy with di-methl ether (DME) and gasoline was tested in a compression ignition engine. Characteristics of combustion and emissions were analyzed with the variation of engine operating parameters such as fuel proportion, DME injection timing, intake oxygen concentration, DME injection pressure and so forth. Gasoline was injected into the intake manifold to form the homogeneous mixture with intake charge and DME was injected directly into the cylinder at the late compression stroke to ignite the homogeneous gasoline-air mixture. Dual fuel combustion strategy was advantageous in achievement of higher thermal efficiency and low NOx emission compared with DME single fuel combustion. Higher thermal efficiency was attributed to the lower heat tranfer loss from the decreased combustion temperature since the amount of lean premixed combustion was increased with the larger amount of gasoline proportion. Lower NOx emissions were also possible by lowering the combustion temperature.

예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구 (An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine)

  • 이종민;이종구;이광주;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

Dielectric Characteristics in Smectic Phase

  • Song, Jun-Ho;Coi, Suck;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.419-422
    • /
    • 2002
  • We have studied dielectric properties in the smectic phases of 4-(6-ethoxy-1-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings. Homogeneous and homeotropic 1.5 and 5${\mu}m$ thick test cells were prepared to analyze molecular dynamic property. We measured capacitance as a function of temperature in the frequency range between 20 Hz and 100 kHz by using HP4284A LCR meter. We observed that the homogeneous cell has high dielectric constant causing dipole moment in smectic $C^{\ast}$ phase, but we can see the dipole moments are canceled out in antiferroelectric phase. It is found that there are two kind of the relaxation director fluctuation below 100 kHz. The first is ionic or space charge contribution below 10 Hz, and the second is Goldstone mode near 1-2 kHz. We will discuss molecular dynamics in smectic phase from extra information such as x-ray and electrooptic data.

  • PDF

엔트로피 해석과 PIV를 이용한 HCCI 엔진용 스월 인젝터의 분무 특성 해석에 관한 연구 (A Study on the Spray Characteristics of Swirl Injector for Use a HCCI Engine using Entropy Analysis and PIV Technique)

  • 안용흠;이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.39-47
    • /
    • 2004
  • The objective of this study is to analyse the spray characteristics according to the injection duration under ambient pressure condition and to investigate the relationship between vorticity and entropy for controlling diffusion process that is the most important thing during the intake stroke injection process. Therefore, the spray velocity was obtained by using the PIV method that has been an useful optical diagnostics technology, and vorticity calculated from spray velocity component with vorticity algorithm. In addition, the homogeneous diffusion rate of spray was quantified by using the entropy analysis based on the Boltzmann's statistical thermodynamics. From these method, we found that as injection duration increases, spray velocity increases and the location of vortex is moved to the downstream of spray. In the same condition, as the entropy decrease, mean vorticity increases. This means that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation.

디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과 (Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine)

  • 국상훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF