• Title/Summary/Keyword: Homing ability

Search Result 7, Processing Time 0.022 seconds

Homing of the Serotine Bat, Eptesicus serotinus (Chiroptera: Vespertilionidae) (문둥이박쥐(Eptesicus serotinus)의 귀소성에 관한 연구)

  • Chung, Chul-Un;Kim, Sung-Chul;Han, Sang-Hoon
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2083-2087
    • /
    • 2014
  • Between May and September 2014, a total of 226 serotine bats (Eptesicus serotinus) were captured and subsequently released at a site 50 km distant from the site of capture, in order to determine the homing ability of the bats and changes in the homing rate according to the season. The bats were captured from a nursery colony at a bridge in An-dong (Gyeongbuk, Korea), and then released at a similar site in Yeong-Ju (Gyeongbuk, Korea). We found that 115 of the 226 bats released (51%) returned to the capture site. However, there was a difference in the homing ability of the serotine bats depending on the season and reproductive status. We found that the homing rate was the highest in June during late pregnancy and the lowest in August after the lactation period.

Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle (가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획)

  • Park, Sung-Kook;Lee, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

Engagement-Scenario-Based Decoy-Effect Simulation Against an Anti-ship Missile Considering Radar Cross Section and Evasive Maneuvers of Naval Ships

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.238-246
    • /
    • 2021
  • The survivability of a naval ship is the ability of the ship and its onboard systems to remain functional and continue a designated mission in man-made hostile environments. A passive decoy system is primarily used as a weapon system for improving the survivability of a naval ship. In this study, an engagement scenario-based simulation program was developed for decoy effectiveness assessments against an anti-ship missile (ASM), which tracks a target with sea-skimming and active radar homing. The program can explain the characteristics of a target ship, such as the radar cross section and evasive maneuvers, as well as the operational performance of the onboard decoy system, the guidance method of the ASM, and the engagement environment's wind speed and direction. This paper describes the theory and formulations, configuration, and user interface of the developed program. Numerical examples of a decoy effect assessment of a virtual naval ship against an ASM are presented.

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

Engineered adult stem cells: a promising tool for anti-cancer therapy

  • Youngdong Choi;Hong Kyu Lee;Kyung-Chul Choi
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings.

The Role of Dendritic Cells in Central Tolerance

  • Oh, Jaehak;Shin, Jeoung-Sook
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.111-120
    • /
    • 2015
  • Dendritic cells (DCs) play a significant role in establishing self-tolerance through their ability to present self-antigens to developing T cells in the thymus. DCs are predominantly localized in the medullary region of thymus and present a broad range of self-antigens, which include tissue-restricted antigens expressed and transferred from medullary thymic epithelial cells, circulating antigens directly captured by thymic DCs through coticomedullary junction blood vessels, and peripheral tissue antigens captured and transported by peripheral tissue DCs homing to the thymus. When antigen-presenting DCs make a high affinity interaction with antigen-specific thymocytes, this interaction drives the interacting thymocytes to death, a process often referred to as negative selection, which fundamentally blocks the self-reactive thymocytes from differentiating into mature T cells. Alternatively, the interacting thymocytes differentiate into the regulatory T (Treg) cells, a distinct T cell subset with potent immune suppressive activities. The specific mechanisms by which thymic DCs differentiate Treg cells have been proposed by several laboratories. Here, we review the literatures that elucidate the contribution of thymic DCs to negative selection and Treg cell differentiation, and discusses its potential mechanisms and future directions.

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System of Mobile Robot

  • Roh, Se-Gon;Park, Jae-Hoon;Lee, Young-Hoon;Song, Young-Kouk;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.731-739
    • /
    • 2008
  • The docking and recharging system for a mobile robot must guarantee the ability to perform its tasks continuously without human intervention. This paper proposes two docking mechanisms with localization error-compensation capability for an auto recharging system. The mechanisms use friction forces or magnetic forces between the docking parts of the robot and those of the docking station. It is a structure to improve the allowance ranges of lateral and directional docking offsets, in which the robot is able to dock into the docking station. In this paper, auto-recharging system and the features of the proposed mechanisms are verified with experimental results using simple homing method.