• Title/Summary/Keyword: Holstein lactating cow

Search Result 69, Processing Time 0.023 seconds

The Effect of Feed Additives Supplement on Prerpartum and Postpartum Feed Intake, Milk Production and Metabolic Disorders of Dairy Cows (전환기 젖소의 사료첨가제 급여가 사료섭취량, 산유량 및 대사성장애 발생에 미치는 영향)

  • Kim, H.S.;Jung, H.Y.;Lee, H.J.;Ki, K.S.;Cho, Y.M.;Ahn, B.S.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.561-572
    • /
    • 2002
  • The objective of this study was to evaluate a feed additives used mainly in lactating cow diets in transient pregrent cow diets. The study was conducted as a completely randomized design with forty Holstein pregnant cows to determine the effect of feeding Aspergillus oryzae(T2), Saccharomyces cerevisiae mixture(T3) and enzyme(cellulase, xylanase) - releasing chemicals(ERC) (T4) on the dry matter intake, milk yield, milk composition and metabolic disorders. Dry matter intake was similar among treatments for 3 weeks prepartum but cows fed enzyme tended to increased feed intake compared to no additives treatment both in calving day and for 3 weeks postpartum. Cows fed Aspergillus oryzae, Saccharomyces cerevisiae and ERC produced more milk than those fed no additives. However, there is no significant difference among treatments. Concentration of glucose was not significantly different among treatment prepartum but that in plasma of cows fed ERC was higher at calving and 3 weeks postpartum compared to others. Increase in NEFA began at 3 weeks prepartum and accelerate during the final 7 days before calving at all treatments but lower for ERC-treated cows at calving and 3 weeks postpartum. Ca concentration not different among treatment prepartum and postpartum. Corticoid content decreased significantly for cows fed ERC compared to those fed non-additives. Metabolic disorder was not occurred in cows fed ERC. However, ketosis and displased abomasum were happened 1 cow when fed non-additives, metritis 1 cow when fed Aspergillus oryzae and retained placenta 1 cow in all treatments except cows fed ERC.

The Nutritive Value of Live Yeast Culture (Saccharomyces cerevisiae) and Its Effect on Milk Yield, Milk Composition and Some Blood Parameters of Dairy Cows

  • Yalcin, Sakine;Yalcin, Suzan;Can, Plnar;Gurdal, Arif O.;Bagci, Cemalettin;Eltan, Onder
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1377-1385
    • /
    • 2011
  • This study was conducted to determine the nutritive value of live yeast culture (RumiSacc, Saccharomyces cerevisiae) and to investigate its effects on milk yield, milk composition and some blood parameters in lactating cows. Six multiparous Holstein cows were allocated to two groups of three cows and assigned randomly to one of two diets in a cross-over experiment. Daily 50 g RumiSacc was top dressed at the p.m. feeding for the treatment group. RumiSacc supplied a high protein and energy with high organic matter digestibility values (83.35%) determined by in vitro enzymatic analysis. Yeast culture supplementation significantly increased milk yield, tended to increase fat yield, protein yield and lactose yield of milk. Methylated fatty acid level of 18:3 (n-3) in milk fat was increased by yeast culture supplementation. The concentrations of methionine, phenyalanine, tyrosine, tryptophan and taurine were significantly increased with dietary inclusion of yeast culture. Live yeast culture supplementation did not affect other performance characteristics, milk quality characteristics and blood parameters. As a conclusion live yeast culture (RumiSacc, Saccharomyces cerevisiae) had high nutritive value and positive effects on milk production and some milk quality characteristics in lactating cows under field conditions.

The relationship between milk composition and conditions of ovary and uterus with reproductive fresh check in early lactating cows (분만 후 첫 번째 번식검진시 난소 및 자궁 질환에 따른 유성분 수준 비교)

  • Moon, Jin-San;Shin, Chong-Bong;Son, Chang-Ho;Joo, Yi-Seok;Kang, Hyun-Mi;Kim, Jong-Man
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.163-170
    • /
    • 2002
  • The relationship between level of milk composition and conditions of ovary and uterus were analyzed in Holstein cows at seven farms participating in a reproductive herd health management program. Milk data were taken from 503 early lactating cows between 30 and 60 days in milk with reproductive examination with ultrasonography from september 1999 to August 2000. Milk fat, protein and solid-not-fat concentration in the herds were $3.70{\pm}1.08%$, $2.97{\pm}0.35$, and $8.41{\pm}0.61%$, respectively. The reproductive disorder relative to normal cows had higher risk in the cows that the level of protein was lower than 2.70%. Also, the higher milk fat than 4.50% were associated with a higher risks in the uterine disease and follicular cysts. Therefore, the cows with the fat to protein ratio of > 1.30 had higher risks for reproductive disorder such as cystic ovarian diseases, inactive ovaries and endometritis. These results indicated that cows diagnosed with reproductive disorder were energy deficient prior to reproductive disorder diagnosis. Consequently, milk fat and protein analyses may be used serve as a monitoring tool for condition of ovary and uterus in early lactating cows

Changes in milk production and blood metabolism of lactating dairy cows fed Saccharomyces cerevisiae culture fluid under heat stress

  • Lim, Dong-Hyun;Han, Man-Hye;Ki, Kwang-Seok;Kim, Tae-Il;Park, Sung-Min;Kim, Dong-Hyeon;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1433-1442
    • /
    • 2021
  • In this study, Saccharomyces cerevisiae culture fluid (SCCF) has been added to a diet of lactating dairy cows to attempt to improve the ruminal fermentation and potentially increase the dry matter intake (DMI) and milk yield. This study was conducted to investigate the effects of SCCF on the milk yield and blood biochemistry in lactating cows during the summer. Twenty-four Holstein dairy cows were randomly assigned to one of four treatments: (1) total mixed ration (TMR-1) (Control); (2) TMR-1 supplemented with SCCF (T1); (3) TMR-2 (containing alfalfa hay) (T2); and (4) TMR-2 supplemented with SCCF (T3). SCCF (5 ml/head, 2.0×107 CFU/mL) was mixed with TMRs daily before feeding to dairy cows. The mean daily temperature-humidity index (THI) during this trial was 76.92 ± 0.51 on average and ranged from 73.04 to 81.19. For particle size distribution, TMR-2 had a lower >19 mm fraction and a higher 8-9 mm fraction than TMR-1 (p < 0.05). The type of TMR did not influence the DMI, body weight (BW), milk yield and composition, or blood metabolites. The milk yield and composition were not affected by the SCCF supplementation, but somatic cell counts were reduced by feeding SCCF (p < 0.05). Feeding SCCF significantly increased the DMI but did not affect the milk yield of dairy cows. The NEFA concentration was slightly decreased compared to that in the control and T2 groups without SCCF. Feeding a yeast culture of S. cerevisiae may improve the feed intake, milk quality and energy balance of dairy cows under heat stress.

Influence of Supplementing Dairy Cows Grazing on Pasture with Feeds Rich in Linoleic Acid on Milk Fat Conjugated Linoleic Acid (CLA) Content

  • Khanal, R.C.;Dhiman, T.R.;Boman, R.L.;McMahon, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1374-1388
    • /
    • 2007
  • Three experiments were conducted to investigate the hypothesis that cows grazing on pasture produce the highest proportion of c-9 t-11 CLA in milk fat and no further increase can be achieved through supplementation of diets rich in linoleic acid, such as full-fat extruded soybeans or soybean oil. In experiment 1, 18 lactating Holstein cows were used in a randomized complete block design with measurements made from wk 4 to 6 of the experiment. In experiment 2, three cannulated lactating Holstein cows were used in a $3{\times}3$ Latin square design. Each period was 4 wk with measurements made in the final wk of each period. Cows in both experiments were assigned at random to treatments: a, conventional total mixed ration (TMR); b, pasture (PS); or c, PS supplemented with 2.5 kg/cow per day of full-fat extruded soybeans (PES). In both experiments, feed intake, milk yield, milk composition, and fatty acid profile of milk and blood serum were measured, along with fatty acid composition of bacteria harvested from rumen digesta in experiment 2. In experiment 3, 10 cows which had continuously grazed a pasture for six weeks were assigned to two groups, with one group (n = 5) on pasture diet alone (PS) and the other group (n = 5) supplemented with 452 g of soy oil/cow per day for 7 d (OIL). In experiment 1, cows in PS treatment produced 350% more c-9, t-11 CLA compared with cows in TMR treatment (1.70 vs. 0.5% of fat), with no further increase for cows in PES treatment (1.50% of fat). Serum c-9, t-11 CLA increased by 233% in PS treatment compared with TMR treatment (0.21 vs. 0.09% of fat) with no further increase for cows in PES treatment (0.18% of fat). In experiment 2, cows in PS treatment produced 300% more c-9 t-11 CLA in their milk fat compared with cows in TMR treatment (1.77 vs. 0.59% of fat), but no further increase for cows in PES treatment (1.84% of fat) was observed. Serum c-9, t-11 CLA increased by 250% for cows in PS treatment compared with cows in TMR treatment (0.27 vs. 0.11% of fat), with no further increase for cows in PES treatment (0.31% of fat). The c-9, t-11 CLA content of ruminal bacteria for cows in PS treatment was 200% or more of TMR treatment, but no further increase in bacterial c-9, t-11 CLA for cows in PES treatment was observed. Supplementation of soy oil in experiment 3 also did not increase the c-9 t-11 CLA content of milk fat compared with cows fed a full pasture diet (1.60 vs. 1.54% of fat). Based on these findings, it was concluded that supplementing with feeds rich in linoleic acid, such as full-fat extruded soybeans or an equivalent amount of soy oil, to cows grazing perennial ryegrass pasture may not increase milk fat c-9 t-11 CLA contents.

A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation

  • Lim, Dong-Hyun;Mayakrishnan, Vijayakumar;Lee, Hyun-Jeong;Ki, Kwang-Seok;Kim, Tae-Il;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.565-576
    • /
    • 2020
  • Recently, Jersey cattle was introduced and produced by embryo transfer to Korea. This study was conducted to investigate the differences of milk compositions between Jersey and Holstein cows and the relationship between days in milk (DIM) and milk compositions during early lactation. Data were collected from twelve lactating cows from Department of Animal Resources Development at National Institute of Animal Science. Cows in parity 1 were used, and calved at spring from April to March of 2017. All cows were housed in two sections within a free-stall barn, which divided into six from each breed, and received a basal total mixed ration. Milk samples of each cow were collected at 3 DIM and 30 DIM for analyzing the milk compositions, including fatty acids (FA), amino acids and minerals. Total solids, citrate, and milk urea nitrogen level were differed between the breeds (p < 0.05). As DIM went from 3 to 30, milk protein, total solids, and somatic cell count decreased (p < 0.05), but lactose increased in all breed milk (p < 0.05). Citrate and free fatty acid (FFA) elevated in Jersey milk (p < 0.05), whereas reduced in Holstein milk (p < 0.05). Proportions of some individual FA varied from the breeds. Myristic (C14:0), palmitic (C16:0), and arachidonic acid (C20:4) in milk from all cows were higher at 3 DIM than at 30 DIM (p < 0.05). Also, stearic (C18:0) and oleic acid (C18:1) were lower at 3 DIM than at 30 DIM (p < 0.05), and the C18:1 to C18:0 ratio was significantly differed in DIM × breed interactions (p < 0.05). The contents of the individual amino acids did not differ from the breeds. Calcium, phosphorous, magnesium, and zinc (Zn) contents was significantly increased in Holstein milk than Jersey milk at 3 DIM. Also, K and Zn concentrations were higher in Holstein milk than in Jersey milk at 30 DIM (p < 0.05). It was concluded that Jersey cows would produce more effective milk in processing dairy products and more proper energy status compared with Holstein cows in early lactation under the same environmental and nutritional conditions.

Effects of Treating Whole-plant or Chopped Rice Straw Silage with Different Levels of Lactic Acid Bacteria on Silage Fermentation and Nutritive Value for Lactating Holsteins

  • Zhang, Y.G.;Xin, H.S.;Hua, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1601-1607
    • /
    • 2010
  • Two experiments were carried out to investigate i) the effects of four levels of lactic acid bacteria inoculants (LAB; 0, $2{\times}10^5$, $3{\times}10^5$ and $4{\times}10^5$ cfu/g fresh forage) and two physical forms of rice straw (whole and chopped rice straw) on silage fermentation quality and nutritive value of rice straw (RS) silage for lactating Holsteins and ii) the effects of the replacement of corn silage (CS) with different inclusion levels (0, 25 and 50%) of LAB treated RS on lactating performance of Holstein dairy cows. Rice straw packed with stretch film was ensiled for 45 d. The results showed that the higher level of LAB inoculants in the silage quadratically decreased pH, $NH_3$-N and acetic acid concentrations and increased the contents of lactic acid and total organic acids. The CP content and DM losses in the silage declined linearly as the level of LAB addition was increased. Compared with whole-plant rice straw silage (WRS), chopped rice straw silage (CRS) dramatically reduced pH by 0.83. The concentrations of $NH_3$-N were similar in WRS and CRS and both were less than 50 g/kg of total N. Chopping rice straw before ensiling significantly enhanced the lactic acid concentration and total organic acids content whereas the concentration of acetic acid declined. The CP, NDF and ADF content of CRS was 13.4, 5.9 and 10.2% lower than in WRS, respectively. Except for butyric acid concentration, significant interaction effects of inoculation level and physical form of RS were found on all fermentation end-products. Our findings indicated that milk yield and composition were not affected by different level of RS inclusion. However, because of the lower cost of WRS, cows consuming a ration in which WRS was partially substituted for CS had 3.48 Yuan (75% CS+25% WRS) and 4.56 Yuan (50% CS+50% WRS) more economic benefit over those fed a CS-based ration. It was concluded that the chopping process and LAB addition could improve the silage quality, and that substitution of corn silage with RS silage lowered the cost of the dairy cow ration without impairing lactation performance.

Effect of Replacing Corn and Wheat Bran With Soyhulls in Lactation Cow Diets on In Situ Digestion Characteristics of Dietary Dry Matter and Fiber and Lactation Performance

  • Meng, Qingxiang;Lu, Lin;Min, Xiaomei;McKinnon, P.J.;Xiong, Yiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1691-1698
    • /
    • 2000
  • An in situ digestion trial (Experiment 1) and a lactation trial (Experiment 2) were conducted to determine the effects of replacing corn and wheat bran with soyhulls (SH) in lactating dairy cow diets on the extent and kinetics of digestion of DM and NDF, and lactation performance. In experiment 1, five mixed feeds consisting of mixed concentrate and roughages (50:50 on a DM basis) were formulated on isonitrogenous and isoenergetic bases to produce five levels (0, 25, 50, 75 and 100%) of SH replacement for corn and wheat bran. SH had high in situ digestion (92 and 89% for potentially digestible DM and NDF) and fairly fast digestion rate (7.2 and 6.3 %/h for DM and NDF). Increasing level of SH replacement resulted in increased NDF digestibility (linear, p=0.001-0.04) and similar DM digestibility (beyond 12 h incubation, p=0.10-0.41). As level of SH replacement increased, percentage of slowly digestible fraction (b) of DM increased (linear, p=0.03), percentage of rapidly digestible fraction (a) of DM tended to decrease (linear, p=0.14), and DM digestion lag time tended to be longer (linear, p=0.13). Percentage of potentially digestible fraction (a+b) and digestion rate (c) of slowly digestible fraction of dietary DM remained unaltered (p=0.36-0.90) with increasing SH in the diet. Increasing level of SH for replacing corn and wheat bran in the diet resulted in increases in percentages of b (quadratic, p<0.001), a (linear, p=0.08), a+b (quadratic, p=0.001) and a tendency to increase in c for NDF (linear, p<0.19). It was also observed that there was a satisfactory fit of a non-linear regression model to NDF digestion data ($R^2=0.986-0.998$), but a relatively poor fit of the model to DM digestion data ($R^2=0.915-0.968$). In experiment 2, 42 lactating Holstein cows were used in a randomized complete block design. SH replaced corn and wheat bran in mixed concentrates at 0, 25, and 50%, respectively. These mixed concentrates were mixed with roughages and fed ad libitum as complete diets. Replacing corn and wheat bran with SH at 0, 25 and 50% levels did not influence (p=0.56-0.95) DM intakes (18.4, 18.6, and 18.5 kg/d), milk yields (27.7, 28.4 and 27.6 kg/d), 4% fat-corrected-milk (FCM) yields (26.2, 27.6, and 27.3 kg/d) and percentages of milk protein (3.12, 3.17 and 3.18%), milk lactose (4.69, 4.76 and 4.68%) and SNF (8.50, 8.64, and 8.54%). On the other hand, milk fat percentges linearly increased (3.63, 3.85 and 3.90% for SH replacement rates of 0, 25 and 50% in the diet, p=0.08), while feed costs per kg FCM production were reduced.

Altering undigested neutral detergent fiber through additives applied in corn, whole barley crop, and alfalfa silages, and its effect on performance of lactating Holstein dairy cows

  • Hosseini, Seyed Mohsen;Mesgaran, Mohsen Danesh;Vakili, Ali Reza;Naserian, Abbas Ali;Khafipour, Ehsan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • Objective: We hypothesized that silage additives may alter the undigested neutral detergent fiber (uNDF) content through ensiling. Therefore, urea and formic acid were applied to corn, whole barley crop (WBC) and alfalfa to change uNDF content of the ensiled forages. Methods: Six experimental diets at two groups of high uNDF (untreated corn and alfalfa silages [CSAS] and untreated whole barley and alfalfa silages [BSAS]) and low uNDF (urea-treated corn silage+untreated alfalfa silage [$CS_UAS$], urea-treated whole barley silage+untreated alfalfa silage [$BS_UAS$], untreated corn silage+formic acid-treated alfalfa silage [$CSAS_F$], and untreated whole barley silage+formic acid-treated alfalfa silage [$BSAS_F$]), were allocated to thirty-six multiparous lactating Holstein dairy cows. Results: The untreated silages were higher in uNDF than additive treated silages, but the uNDF concentrations among silages were variable (corn silage0.05). Milk yield tended to increase in the cows fed high uNDF diets than those fed low uNDF (p = 0.10). The cows fed diet based on urea-treated corn silage had higher milk yield than those fed other silages (p = 0.05). The substitution of corn silage with the WBC silage tended to decrease milk production (p = 0.07). Changing the physical source of NDF supply and the uNDF content from the corn silage to the WBC silage caused a significant increase in ruminal $NH_3-N$ concentration, milk urea-N and fat yield (p<0.05). The cows fed diets based on WBC silage experienced greater rumination time than the cows fed corn silage (p<0.05). Conclusion: Administering additives to silages to reduce uNDF may improve the performance of Holstein dairy cows.

Covariance Among Lactation Number, Growth Performance, Calving Interval, and Milk Yield in Holstein Dairy Cows in Korea

  • Kim, Tae-Il;Mayakrishnan, Vijayakumar;Baek, Kwang-Soo;Jeong, Ha-Yeon;Park, Boem-Young;Lim, Dong-Hyun
    • Journal of agriculture & life science
    • /
    • v.51 no.6
    • /
    • pp.137-144
    • /
    • 2017
  • A diverse of recommendation has been made for the structure and management of dairy cows, despite demanding research, the relationship between lactation number and various factors is yet to be established. The present study was aimed to investigate the covariance among lactation number, growth performance, calving interval, and milk production was considered to increase an efficiency of selection schemes and to manage more efficiently Holstein dairy cows that have been raised on small-scale family farms in Republic of Korea. For that purpose, the data were observed from 850 Holstein dairy cows, which a total of 3929 milking, since April 2016 - January 2017. We measured the body weight, height, age, calving interval, and milk production of the each dairy cow. Also, information about the date of lactation, calving interval, and milk production was recorded using an automatic milking system(AMS) with identification numbers. Milk production was calculated per udder quarter in the AMS. Our study results showed the increased average body weight(p>0.05) in 1, 2, 3, and $4^{th}$ lactating dairy cows and afterwards, we noticed the tendency on the average body weight(p<0.05) per lactation progressed. There was no significant difference noticed on height measurement of dairy cows. From the processing data of 850 Holstein dairy cows, the lactation number 1 and 7 had a greater calving interval with significantly lowered milk production, and the lactation number 2, 3, 4, 5, and 6 had significantly lowered the calving interval(p<0.05) with a greater milk production. From our study results, we evidenced that there is a significant relationship between the lactation number, growth performance, calving interval, and milk yield, and the maximum production of milk occurring in the $3^{rd}$ and $4^{th}$ lactation dairy cows. The achieved results from this study can be used by the small-scale farmers to encourage the structure and management of growth performance, calving interval, and milk yield in Holstein dairy cows in Korea.