• Title/Summary/Keyword: Hologram Coding

Search Result 22, Processing Time 0.028 seconds

A New Coding Technique for Scalable Video Service of Digital Hologram (디지털 홀로그램의 적응적 비디오 서비스를 위한 코딩 기법)

  • Seo, Young-Ho;Bea, Yoon-Jin;Lee, Yoon-Hyuk;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.92-103
    • /
    • 2012
  • In this paper, we discuss and propose a new algorithm of coding technique for scalably servicing holographic video in various decoding environment. The proposed algorithm consists of the hologram-based resolution scalable coding (HRS) and the light source-based SNR scalable coding (LSS). They are classified by the method generating and capturing hologram. HRS is a scalable coding technique for the optically captured hologram and LSS is one for the light source before generating hologram. HRS can provide the scalable service of 8 steps with the compression ratio from 1:1 to 100:1 for a $1,024{\times}1,024$ hologram. LSS can also provide the various service depending on the number of the light source division using lossless compression. The proposed techniques showed the scalable holographic video service according to the display with the various resolutions, computational power of the receiving equipment, and the network bandwidth.

Hologram Compression Technique using Motion Compensated Temporal Filtering (움직임보상 시간적 필터링을 이용한 홀로그램 압축 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1296-1302
    • /
    • 2009
  • We propose an efficient coding method of digital holograms using MCTF and standard compression tools for video. The hologram is generated by a computer-generated hologram (CGH) algorithm with both an object image and its depth information. The proposed coding consists of localization by segmenting a hologram, frequency transform using $64\times64$ segment size, 2-D discrete cosine transform DCT for extracting redundancy, motion compensated temporal filtering (MCTF), segment scanning the segmented hologram to form a video sequence, and video coding, which uses H.264/AVC. The proposed algorithm illustrates that it has better properties for reconstruction, 10% higher compression rate than previous research in case of object.

Computer generated hologram compression using video coding techniques (비디오 코딩 기술을 이용한 컴퓨터 형성 홀로그램 압축)

  • Lee, Seung-Hyun;Park, Min-Sun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.767-774
    • /
    • 2005
  • In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video images. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. The proposed algorithm illustrated that it have better properties for reconstruction and compression rate than the previous methods.

  • PDF

Digital Hologram Coding Technique using Block Matching of Localized Region and MCTF (로컬영역의 정합기법 및 MCTF를 이용한 디지털 홀로그램 부호화 기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.415-416
    • /
    • 2006
  • In this paper, we proposed a new coding technique of digital hologram video using 3D scanning method and video compression technique. The proposed coding consists of capturing a digital hologram to separate into RGB color space components, localization by segmenting the fringe pattern, frequency transform using $M{\tiems}N$ (segment size) 2D DCT (2 Dimensional Discrete Cosine Transform) for extracting redundancy, 3D scan of segment to form a video sequence, motion compensated temporal filtering (MCTF) and modified video coding which uses H.264/AVC.

  • PDF

A Resolution-Scalable Data Compression Method of a Digital Hologram (디지털 홀로그램의 해상도-스케일러블 데이터 압축 방법)

  • Kim, Yoonjoo;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.174-183
    • /
    • 2014
  • This paper is to propose a scalable video coding scheme for adaptive digital hologram video service for various reconstruction environments. It uses both the light source information and digital hologram at both the sending side and the receiving side. It is a resolution-scalable coding method that scales the resolution, that is, the size of the reconstructed image. The method compresses the residual data for both the digital hologram and the light source information. For the digital hologram, a lossy compression method is used, while for the light source information, a lossless compression method is used. The experimental results showed that the proposed method is superior to the existing method in the image quality at the same compression ratio. Especially it showed better performance than the existing method as the compression ratio becomes higher.

An Efficient Coding Technique of Holographic Video Signal using 3D Segment Scanning (분할영역의 3차원 스캐닝을 이용한 홀로그래픽 비디오 신호의 효율적인 부호화 기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.132-140
    • /
    • 2007
  • In this paper, we proposed a new technique to encode and decode the digital hologram. Since the digital hologram (or fringe pattern) is generated by interference of light, it has much different property from natural 2D (2 dimensional) images. First, we acquisite optical-sensed or computer-generated hologram by digital type, and then extract a chrominance component. The extracted digital hologram for coding is separated into segments to use multi-view properties. The segmented hologram shows the similar characteristics with picturing an object with 2D cameras in various point of view. Since fringe pattern is visually observed like as noise, we expect that the fringe pattern has poor coding efficiency. To obtain high efficiency, the segment is transformed with DCT (Discrete Cosine Transform) which resembles hologram generation process with high performance. Each transformed segment passes the 3D scanning process according to time and spatial correlation, and is organized into a video stream. Since the segment which correspond to frame of a video stream consists of the transformed coefficients with wide range of value, it is classified and re-normalized. Finally it is compressed with coding tools. The proposed algorithm illustrated that it has better properties for reconstruction of 16 times higher compression rate than the previous researches.

Digital Hologram Compression Technique using Multi-view Prediction Method (다시점 예측 기법을 이용한 디지털 홀로그램의 압축 기술)

  • Choi, Hyun-Jun;Seo, Young-Ho;Bae, Jin-Woo;Yoo, Ji-Sang;Kim, Dong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.413-414
    • /
    • 2006
  • In this paper, we propose an efficient coding method of digital hologram (or fringe pattern) using multi-view prediction technique based on video and image coding standard such as MPEG. The proposed algorithm illustrates that it has better properties for reconstruction and higher compression rate than the previous researches.

  • PDF

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

A Study on Reconstruction Performance of Phase-only Holograms with Varying Propagation Distance (전파 거리에 따른 위상 홀로그램 복원성능 분석 및 BL-ASM 개선 방안 연구)

  • Jun Yeong Cha;Hyun Min Ban;Seung Mi Choi;Jin Woong Kim;Hui Yong Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • A computer-generated hologram (CGH) is a digitally calculated and recorded hologram in which the amplitude and phase information of an image is transmitted in free space. The CGH is in the form of a complex hologram, but it is converted into a phase-only hologram to display through a phase-only spatial light modulator (SLM). In this paper, in the process of including the amplitude information of an object in the phase information, when a technique that includes subsampling such as DPAC is used, we showed experimentally that the bandwidth of the phase-only hologram increases, and as a result, aliasing that was not present in the complex hologram can occur. In addition, it was experimentally shown that it is possible to generate a high-quality phase-only hologram by restricting the spatial frequency range even at a distance where the numerical reconstruction performance is degraded by aliasing.